3 resultados para TRANSFERS

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data-intensive Grid applications require huge data transfers between grid computing nodes. These computing nodes, where computing jobs are executed, are usually geographically separated. A grid network that employs optical wavelength division multiplexing (WDM) technology and optical switches to interconnect computing resources with dynamically provisioned multi-gigabit rate bandwidth lightpath is called a Lambda Grid network. A computing task may be executed on any one of several computing nodes which possesses the necessary resources. In order to reflect the reality in job scheduling, allocation of network resources for data transfer should be taken into consideration. However, few scheduling methods consider the communication contention on Lambda Grids. In this paper, we investigate the joint scheduling problem while considering both optical network and computing resources in a Lambda Grid network. The objective of our work is to maximize the total number of jobs that can be scheduled in a Lambda Grid network. An adaptive routing algorithm is proposed and implemented for accomplishing the communication tasks for every job submitted in the network. Four heuristics (FIFO, ESTF, LJF, RS) are implemented for job scheduling of the computational tasks. Simulation results prove the feasibility and efficiency of the proposed solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data-intensive Grid applications require huge data transfers between grid computing nodes. These computing nodes, where computing jobs are executed, are usually geographically separated. A grid network that employs optical wavelength division multiplexing (WDM) technology and optical switches to interconnect computing resources with dynamically provisioned multi-gigabit rate bandwidth lightpath is called a Lambda Grid network. A computing task may be executed on any one of several computing nodes which possesses the necessary resources. In order to reflect the reality in job scheduling, allocation of network resources for data transfer should be taken into consideration. However, few scheduling methods consider the communication contention on Lambda Grids. In this paper, we investigate the joint scheduling problem while considering both optical network and computing resources in a Lambda Grid network. The objective of our work is to maximize the total number of jobs that can be scheduled in a Lambda Grid network. An adaptive routing algorithm is proposed and implemented for accomplishing the communication tasks for every job submitted in the network. Four heuristics (FIFO, ESTF, LJF, RS) are implemented for job scheduling of the computational tasks. Simulation results prove the feasibility and efficiency of the proposed solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The detection of pertinent biomarkers has the potential provide an early indication of disease progression before considerable damage has been incurred. A decrease in an individual’s sensitivity to insulin, which may be quantified as the ratio of insulin to glucose in the blood after a glucose pulse, has recently been reported as an early predictor of insulin-dependent diabetes mellitus. Routine measurement of insulin levels is therefore desirable in the care of diabetes-prone individuals. A rapid, simple, and reagentless method for insulin detection would allow for wide-spread screenings that provide earlier signs of diabetes onset. The aim of this thesis is to develop a folding-base electrochemical sensor for the detection of insulin. The sensor described herein consists of a DNA probe immobilized on a gold disc electrode via an alkanethiol linker and embedded in an alkanethiol self-assembled monolayer. The probe is labeled with a redox reporter, which readily transfers electrons to the gold electrode in the absence of insulin. In the presence of insulin, electron transfer is inhibited, presumably due to a binding-induced conformational or dynamic change in the DNA probe that significantly alters the electron-tunneling pathway. A 28-base segment of the insulin-linked polymorphic region that has been reported to bind insulin with high affinity serves as the capture element of the DNA probe. Three probe constructs that vary in their secondary structure and position of the redox label are evaluated for their utility as insulin-sensing elements on the electrochemical platform. The effects of probe modification on secondary structure are also evaluated using circular dichroism spectroscopy.