4 resultados para Surveillance and Reconnaissance
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Surveillance and control activities related to bovine tuberculosis (TB) in free-ranging, Michigan white-tailed deer (Odocoileus virginianus) have been underway for over a decade, with significant progress. However, foci of higher TB prevalence on private lands and limited agency ability to eliminate them using broad control strategies have led to development and trial of new control strategies, such as live trapping, testing, and culling or release. Such strategies require a prompt, accurate live animal test, which has thus far been lacking. We report here the ability of seven candidate blood assays to determine the TB infection status of Michigan deer. Our aims were twofold: to characterize the accuracy of the tests using field-collected samples and to evaluate the feasibility of the tests for use in a test-and-cull strategy. Samples were collected from 760 deer obtained via five different surveys conducted between 2004 and 2007. Blood samples were subjected to one or more of the candidate blood assays and evaluated against the results of mycobacterial culture of the cranial lymph nodes. Sensitivities of the tests ranged from 46% to 68%, whereas specificities and negative predictive values were all .92%. Positive predictive values were highly variable. An exploratory analysis of associations among several host and sampling-related factors and the agreement between blood assay and culture results suggested these assays were minimally affected. This study demonstrated the capabilities and limitations of several available blood tests for Mycobacterium bovis on specimens obtained through a variety of field surveillance methods. Although these blood assays cannot replace mass culling, information on their performance may prove useful as wildlife disease managers develop innovative methods of detecting infected animals where mass culling is publicly unacceptable and cannot be used as a control strategy.
Resumo:
Interest in the epidemiology of emerging diseases of humans and livestock as they relate to wildlife has increased greatly over the past several decades. Many factors, most anthropogenic, have facilitated the emergence of diseases from wildlife. Some livestock diseases have ‘‘spilled over’’ to wildlife and then ‘‘spilled back’’ to livestock. When a population is exposed to an infectious agent, depending on an interaction of factors involving the host, agent, and environment, the population may be resistant to infection or may become a dead-end host, a spillover host, or a maintenance host. Each exposure is unique; the same species of host and agent may respond differently in different situations. Management actions that affect the environment and behavior of a potential host animal may allow the emergence of a new or as yet undetected disease. There are many barriers in preventing, detecting, monitoring and managing wildlife diseases. These may include political and legal hurdles, lack of knowledge about many diseases of wildlife, the absence of basic data on wildlife populations, difficulties with surveillance, and logistical constraints. Increasing interaction between wildlife and humans or domestic animals may lead to disease emergence and require innovative methods and strategies for disease surveillance and management in wildlife.
Resumo:
Table of Contents: SCWDS Celebrates 50 Years More Bovine TB in Minnesota Developments in CWD Surveillance and Research Federal CWD Rule Update Tularemia in Backyard Wildlife Osteochondromas in Two Deer Invasive Exotic Animals in the Southeast New Field Manual Sales
Resumo:
At the first Vertebrate Pest Control Conference in 1964, I traced the history of plague control in California and outlined a revised approach, based on newer concepts of plague ecology. In our state of relative ignorance, this required a number of unproved assumptions about plague occurrence in California that verged on crystal ball gazing. These were principally that (1) plague persists in relatively resistant rodent species in certain favorable locations, (2) ground squirrels and chipmunks experience periodic epizootics, but are not permanent reservoirs, (3) plague "foci" of the past were merely sites of conspicuous epizootics, they did not necessarily correspond to permanent foci, and could result from epizootic migrations over considerable distances, and (4) a number of assumptions about areas of greatest epizootic potential can be made by analyzing the pattern of recurrent plague outbreaks in the past. Since then the validity of these assumptions has been tested by the largest outbreak of plague since the early 1940's. We believe that the results have proved the crystal ball largely correct, resulting in much more precise and efficient epizootic surveillance and deployment of control measures than in the past. The outbreak was for us an administrative emergency that exceeded the capacities of the State Health Department. We greatly appreciated the vital help and cooperation of other agencies and individuals. The U.S, Public Health Service accepted a heavy burden of laboratory testing through its San Francisco Field Station, and provided emergency field personnel. The contributions of State Department of Agriculture, Bureau of Weed and Vertebrate Pest Control; U.S. Parks, Forest Service and Bureau of Land Management; local health and agriculture department; and State Division of Parks personnel were essential in accomplishing control work, as well as epizootic surveillance.