2 resultados para Surgical site infection

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The elimination of all external incisions is an important step in reducing the invasiveness of surgical procedures. Natural Orifice Translumenal Endoscopic Surgery (NOTES) is an incision-less surgery and provides explicit benefits such as reducing patient trauma and shortening recovery time. However, technological difficulties impede the widespread utilization of the NOTES method. A novel robotic tool has been developed, which makes NOTES procedures feasible by using multiple interchangeable tool tips. The robotic tool has the capability of entering the body cavity through an orifice or a single incision using a flexible articulated positioning mechanism and once inserted is not constrained by incisions, allowing for visualization and manipulations throughout the cavity. Multiple interchangeable tool tips of the robotic device initially consist of three end effectors: a grasper, scissors, and an atraumatic Babcock clamp. The tool changer is capable of selecting and switching between the three tools depending on the surgical task using a miniature mechanism driven by micro-motors. The robotic tool is remotely controlled through a joystick and computer interface. In this thesis, the following aspects of this robotic tool will be detailed. The first-generation robot is designed as a conceptual model for implementing a novel mechanism of switching, advancing, and controlling the tool tips using two micro-motors. It is believed that this mechanism achieves a reduction in cumbersome instrument exchanges and can reduce overall procedure time and the risk of inadvertent tissue trauma during exchanges with a natural orifice approach. Also, placing actuators directly at the surgical site enables the robot to generate sufficient force to operate effectively. Mounting the multifunctional robot on the distal end of an articulating tube provides freedom from restriction on the robot kinematics and helps solve some of the difficulties otherwise faced during surgery using NOTES or related approaches. The second-generation multifunctional robot is then introduced in which the overall size is reduced and two arms provide 2 additional degrees of freedom, resulting in feasibility of insertion through the esophagus and increased dexterity. Improvements are necessary in future iterations of the multifunctional robot; however, the work presented is a proof of concept for NOTES robots capable of abdominal surgical interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen of swine and is known to cause abortion and infertility in pregnant sows and respiratory distress in piglets. PRRSV contains a major glycoprotein (GP5) and three minor glycoproteins (GP2a, GP3, and GP4) on the virion envelope, all of which are required for infectious virus production. To study their interactions amongst each other and with a cellular receptor for PRRSV, CD163, I cloned each of the viral glycoproteins and CD163 in various expression vectors. My studies have shown that while the GP2a, GP3, and GP4 are co-translationally glycosylated, the GP5 is post-translationally glycosylated. By using co-immunoprecipitation (co-IP) assays, strong interaction was demonstrated between GP4 and GP5 proteins, although weak interactions among the other envelope glycoproteins were also detected. Further, GP4 was found to mediate interactions leading to formation of multiprotein glycoprotein complex. My results also show that GP2a and GP4 proteins are the only two GPs that specifically interact with the CD163 molecule and that glycosylation of these GPs is required for efficient interaction. Based on these studies, I have developed an interactome map of the viral GPs and CD163 and have proposed a model of the viral glycoprotein complex and its interaction with CD163. Studies reported here also show that glycan addition at residue 184 (N184) of GP2a, and residues N42, N50, and N131 of GP3 is essential for recovery of infectious virus. Although single site glycosylation mutants of GP4 had no effect on infectious virus production, introduction of double mutations was lethal. The loss of glycan moieties of GP2a, GP3, and GP4 proteins had no effect on host neutralizing antibody production. Overall, I conclude that the PRRSV glycoproteins are co-translationally and post-translationally glycosylated, the GP4 protein is central to mediating interglycoprotein interactions, and along with GP2a, serves as the viral attachment protein that is responsible for interactions with the viral receptor, CD163. Further, glycosylation of GP2a, GP3, and GP4 proteins is required for infectious virus production, efficient interaction with CD163, but does not play any role in neutralizing antibody response in infected animals.