2 resultados para Storage in the home

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coyote (Canis latrans) is among the most studied animals in North America. Because of its adaptability and success as a predator, the coyote has flourished and is still expanding its range. Coyotes can now be found throughout most of North America and south into Central America (Voight and Berg 1987). Studies in recent years have been extensive to understand the interrelationships of prey and coyotes (Shelton and Klindt 1974, Beckoff and Wells 1981), as well as demographic relationships (Davis et al. 1975, Knowlton and Stoddart 1978, Mitchell 1979, Bowen 1981) and feeding strategies (Todd and Keith 1976, Andelt et al. 1987, MacCracken and Hansen 1987, Gese et al. 1988a). With the advance of radio telemetry, researchers have investigated lifestyle characteristics spatially with home ranges or temporally with movements in relation to habitat requirements. Researchers have studied home ranges of coyotes in various regions of the United States (Livaitis and Shaw 1980, Andelt 1981, Springer 1982, Pyrah 1984, Gese et al. 1988a) and Canada (Bowen 1982). Some studies of home range were separated by season (Ozoga and Harger 1966) or relation to nearby food sources (Danner and Smith 1980). Home range analysis in relation to social interactions of coyotes has been either neglected, overlooked, or avoided. Gese et al. (1988a) recognized a transient class of coyote by home range size. Coyote social systems are very complex and can vary by season or locality in addition to some reports of group or pack systems (Hamlin and Schweitzer 1979, Beckoff and Wells 1981, Bowen 1981, Gese et al. 1988b). Coyotes maintain communication with conspecifics through vocal and olfactory signals (Lehner 1987, Bowen and McTaggert Cowan 1980). Social interactions may be by far the most complex and least understood aspect related to coyote ecology. Coyote movements can be related to many factors including food, water, cover, and social interactions. Movements in relation to food sources are well documented (Fitch 1948, Todd and Keith 1976, Danner and Smith 1980) although reports on movements in relation to water have not been reported, probably because of limited research in desert situations. There has been some mention of coyotes' movements in relation to cover (Wells and Beckoff 1982). The objectives of this study were to delineate annual and seasonal home ranges, movements, and habitat use of coyotes in the northern Chihuahuan desert.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial selection for starvation resistance provided insight into the relationships between evolved physiological and life history trait responses following exposure to biologically induced stress. Investigations of alterations to body composition, metabolic rate, movement, and life history traits including development time, female egg production, and longevity in response to brief periods of starvation were conducted on genetically based starvation-resistant and control lines of Drosophila melanogaster. Analysis of the starvation-resistant lines indicated increased energy storage with increased triglyceride deposition and conversion of carbohydrates to lipid, as identified by respiratory quotient values. Correlations between reductions in metabolic rates and movement in the starvation-resistant lines, suggested the presence of an evolved physiological response resulting in energy conservation. Investigations of life history traits in the starvation-resistant lines indicated no significant differences in development time or reproduction between the selected and control lines. Measurements of longevity, however, indicated a significant reduction in starvation-resistant D. melanogaster lifespan. These results suggested that elevated lipid concentrations, similar to that observed with obesity, were correlated with premature mortality. Exposure of the starvation-resistant and control lines to diets supplemented with glucose, palmitic acid, and a 2:1 mixture of casein to albumin were used to investigate alterations in body composition, movement, and life history traits. Results obtained from this study indicated that increased sugar in the diet led to increased carbohydrate, glycogen, total sugar, trehalose, and triglyceride concentrations, while increased fat and protein in the diet resulted in increased soluble protein, carbohydrate, glycogen, total sugar, and trehalose concentrations. Examination of life history trait responses indicated reduced fecundity in females exposed to increased glucose concentrations. Increased supplementations of palmitic acid was consistently correlated with an overall reduction in lifespan in both the starvation-resistant and control Drosophila lines, while measurements of movement indicated increased female activity levels in flies exposed to diets supplemented with fat and protein. Analyses of the physiological and life history trait responses to starvation and dietary supplementation on Drosophila melanogaster used in the present study has implications for investigating the mechanisms underlying the development and persistence of human obesity and associated metabolic disorders.