6 resultados para Stevens, Vance

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

President Roger Wehrbein Vice President Ted Klug Secretary George B. O'Neal Treasurer Ralph Hazen Marshal Bud Reece Historian Tom Kraeger Co-Historian John Zauha Ag. Executive Representative Larry Williams Faculty Advisor Dr. E. B. Peo, Jr. George Ahlschwede Richard Hahn Henry Beel Ralph Hazen Gary Briggs Gary Heineman Leslie Cook Max Hauser Richard Eberspacher Buce Jameson Russ Edeal Leon Janovy William Ehresman Alan Jorgensen Rolland Eubanks John Joyner Mickey Evertson Marshall Jurgens Jesse Felker Ron Kahle Mylon Filkins Donald Kavan Richard Frahm Max Keasling Roger French Ronald Kennedy Angus Garey Ted Klug Ed Gates Herb Kraeger Gerald Gogan Tom Kraeger Gerald Goold Fernando Lagos Jay Graf Gerald Lamberson Lloyd Langemeier Ralph Langemeier Gerald Loseke Donald Meiergerd Lowell Minert John Oeltjen George B. O'Neal Don Ormesher Larry Ott Bud Reece Ron Sabatka Keith Smith Ronald Smith Donn Simonson Daryl Starr Galen Stevens Eugene Turdy Ernest Thayer Charles Thompson Jerry Thompson Eli Thomssen William Watkins Allen Trumble Robert Weber Lawrence Turner Dan Wehrbein Reginald Turner Roger Wehrbein Vance Uden Dick White Max Waldo Billy Williams Blair Williams Larry Williams D. Patrick Wright John Zauha

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When I teach geoarchaeology, I tell students on the first day of class that "soils are the canvas for much of the archaeological record." Just as an artist's canvas holds and affects the paint, soils hold archaeological materials, and soil-forming processes strongly influence the preservation and spatial pattern of cultural deposits. Given this close relationship between soils and the material remains of humans, we have long needed a treatise that addresses all aspects of soils from an archaeological perspective. Vance Holliday's latest book, Soils in Archaeological Research, does this and more.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Riparian buffer zones are important sites of biodiversity, sediment trapping, pollutant removal, and hydrologic regulation that have significant implications for both people and wildlife. Urbanization’s influence on and need for adequate water quality increases the need for careful planning in regards to riparian areas. Wildlife are key components in the ecosystem functions of riparian zones and require consideration in peri-urban planning as well. This study reviews relevant literature to determine the recommended minimum riparian buffer width for maintaining water quality and habitat along Stevens Creek in Lincoln, Nebraska. Only sources that listed a specific purpose related to water quality and habitat for their buffer width recommendations were considered. The study found that the baseline buffer width recommended for Stevens Creek that would be adequate for both water quality maintenance and basic habitat is 50 ft (15 m) per side. This number may be modified based on other factors such as slope, soil particle size, adjacent land use, the presence of certain wildlife communities, stream size, and stream order.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alpine glaciers have receded substantially over the last century in many regions of the world. Resulting changes in glacial runoff not only affect the hydrological cycle, but can also alter the physical (i.e., turbidity from glacial flour) and biogeochemical properties of downstream ecosystems. Here we compare nutrient concentrations, transparency gradients, algal biomass, and fossil diatom species richness in two sets of high-elevation lakes: those fed by snowpack melt alone (SF lakes) and those fed by both glacial and snowpack meltwaters (GSF lakes). We found that nitrate (NO3-) concentrations in the GSF lakes were 1-2 orders of magnitude higher than in SF lakes. Although nitrogen (N) limitation is common in alpine lakes, algal biomass was lower in highly N-enriched GSF lakes than in the N-poor SF lakes. Contrary to expectations, GSF lakes were more transparent than SF lakes to ultraviolet and equally transparent to photosynthetically active radiation.Sediment diatom assemblages had lower taxonomic richness in the GSF lakes, a feature that has persisted over the last century. Our results demonstrate that the presence of glaciers on alpine watersheds more strongly influences NO3- concentrations in high-elevation lake ecosystems than any other geomorphic or biogeographic characteristic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The availability of water shapes life in the western United States, and much of the water in the region originates in the Rocky Mountains. Few studies, however, have explicitly examined the history of water levels in the Rocky Mountains during the Holocene. Here, we examine the past levels of three lakes near the Continental Divide in Montana and Colorado to reconstruct Holocene moisture trends. Using transects of sediment cores and sub-surface geophysical profiles from each lake, we find that mid-Holocene shorelines in the small lakes (4–110 ha) were as much as ~10 m below the modern lake surfaces. Our results are consistent with existing evidence from other lakes and show that a wide range of settings in the region were much drier than today before 3000–2000 years ago. We also discuss evidence for millennial-scale moisture variation, including an abruptly-initiated and -terminated wet period in Colorado from 4400 to 3700 cal yr BP, and find only limited evidence for low-lake stands during the past millennium. The extent of low-water levels during the mid-Holocene, which were most severe and widespread ca. 7000–4500 cal yr BP, is consistent with the extent of insolation-induced aridity in previously published regional climate model simulations. Like the simulations, the lake data provide no evidence for enhanced zonal flow during the mid-Holocene, which has been invoked to explain enhanced mid-continent aridity at the time. The data, including widespread evidence for large changes on orbital time scales and for more limited changes during the last millennium, confirm the ability of large boundary-condition changes to push western water supplies beyond the range of recent natural variability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Millennial-scale climate variation during the Last Glacial period is evident in many locations worldwide, but it is unclear if such variation occurred in the interior of tropical South America, and, if so, how the low-latitude variation was related to its high-latitude counterpart. A high-resolution record, derived from the deep drilling of sediments on the floor of Lake Titicaca in the southern tropical Andes, is presented that shows clear evidence of millennial-scale climate variation between ~60 and 20 ka BP. This variation is manifested by alternations of two interbedded sedimentary units. The two units have distinctive sedimentary, geochemical, and paleobiotic properties that are controlled by the relative abundance of terrigenous or nearshore components versus pelagic components. The sediments of more terrigenous or nearshore nature likely were deposited during regionally wetter climates when river transport of water and sediment was higher, whereas the sediments of more pelagic character were deposited during somewhat drier climates regionally. The majority of the wet periods inferred from the Lake Titicaca sediment record are correlated with the cold events in the Greenland ice cores and North Atlantic sediment cores, indicating that increased intensity of the South American summer monsoon was part of near-global scale climate excursions.