2 resultados para Species composition

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied relations between river size, fish species diversity, and fish species composition along four major rivers in the Great Plains of southwestern South Dakota to assess patterns of species diversity and composition. We expected diversity to increase with river size and fish composition to change via species addition downstream. Previous surveys of 52 sampling stations provided fish assemblage data, and we used the Geographic Information System (GIS) to determine watershed area by station. Watershed area did not predict species richness or species diversity (Fisher's a), so species richness of 12 ± 3.5 SD species and Fisher's a of 2.3 ± 0.87 SD characterized species diversity in the study area. Cluster analysis of faunal similarity (Sorensen's Index) among the 52 sampling stations identified two geographically distinct faunal divisions, so species composition was variable within the study area, but changed via species replacements among faunas rather than species additions downstream. Nonnative species were a minor component of all faunas. Uniform species diversity may be a recent phenomenon caused by impacts of Missouri River dams on native large-river fishes and the unsuitability of rivers in the Great Plains for nonnative species. Variation in faunal composition may also be recent because it was affected by dams.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The changes in diatom species composition in a sediment core from Crevice Lake, Yellowstone National Park, spanning the past 2550 yr, were used to reconstruct long-term limnological and ecological conditions that may be related to late Holocene climate variability. Planktic forms dominate the fossil diatom assemblages throughout this record, but changes in species dominance indicate varying nutrient levels over time, particularly phosphorus. The changes in the nutrient concentrations in the lake were probably driven by changes in temperature and wind strength that affected the duration of watercolumn mixing and thus the extent of nutrient recycling from deep waters. Prior to 2100 cal before present (BP), Stephanodiscus minutulus and Synedra tenera dominated, suggesting long cool springs with extensive regeneration of phosphorus from the hypolimnion that resulted from isothermal mixing. From 2100 to 800 cal BP, these species were replaced by Cyclotella michiganiana and Cyclotella bodanica. These species are characteristic of lower nutrient concentrations and are interpreted here to reflect warm summers with long periods of thermal stratification. From 800 to 50 cal BP, S. minutulus dominated the diatom assemblage, suggesting a return to lengthy mixing during spring. The most dramatic late Holocene changes in the fossil diatom assemblages occurred during the transition from the Medieval Period to the Little Ice Age, approximately 800 cal BP.