2 resultados para Spatial Point Pattern analysis
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
We consider a fully model-based approach for the analysis of distance sampling data. Distance sampling has been widely used to estimate abundance (or density) of animals or plants in a spatially explicit study area. There is, however, no readily available method of making statistical inference on the relationships between abundance and environmental covariates. Spatial Poisson process likelihoods can be used to simultaneously estimate detection and intensity parameters by modeling distance sampling data as a thinned spatial point process. A model-based spatial approach to distance sampling data has three main benefits: it allows complex and opportunistic transect designs to be employed, it allows estimation of abundance in small subregions, and it provides a framework to assess the effects of habitat or experimental manipulation on density. We demonstrate the model-based methodology with a small simulation study and analysis of the Dubbo weed data set. In addition, a simple ad hoc method for handling overdispersion is also proposed. The simulation study showed that the model-based approach compared favorably to conventional distance sampling methods for abundance estimation. In addition, the overdispersion correction performed adequately when the number of transects was high. Analysis of the Dubbo data set indicated a transect effect on abundance via Akaike’s information criterion model selection. Further goodness-of-fit analysis, however, indicated some potential confounding of intensity with the detection function.
Resumo:
Most authors struggle to pick a title that adequately conveys all of the material covered in a book. When I first saw Applied Spatial Data Analysis with R, I expected a review of spatial statistical models and their applications in packages (libraries) from the CRAN site of R. The authors’ title is not misleading, but I was very pleasantly surprised by how deep the word “applied” is here. The first half of the book essentially covers how R handles spatial data. To some statisticians this may be boring. Do you want, or need, to know the difference between S3 and S4 classes, how spatial objects in R are organized, and how various methods work on the spatial objects? A few years ago I would have said “no,” especially to the “want” part. Just let me slap my EXCEL spreadsheet into R and run some spatial functions on it. Unfortunately, the world is not so simple, and ultimately we want to minimize effort to get all of our spatial analyses accomplished. The first half of this book certainly convinced me that some extra effort in organizing my data into certain spatial class structures makes the analysis easier and less subject to mistakes. I also admit that I found it very interesting and I learned a lot.