2 resultados para Soil water. eng

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective—To determine the distribution of lesions and extent of tissues infected with Mycobacterium bovis in a captive population of white-tailed deer. Design—Cross-sectional study. Animals—116 captive white-tailed deer. Procedure—Deer were euthanatized, and postmortem examinations were performed. Tissues with gross lesions suggestive of tuberculosis were collected for microscopic analysis and bacteriologic culture. Tissues from the head, thorax, and abdomen of deer with no gross lesions were pooled for bacteriologic culture. Tonsillar, nasal, oral, and rectal swab specimens, fecal samples, and samples of hay and pelleted feed, soil around feeding sites, and water from 2 natural ponds were collected for bacteriologic culture. Results—Mycobacterium bovis was isolated from 14 of 116 (12%) deer; however, only 9 of 14 had lesions consistent with tuberculosis. Most commonly affected tissues included the medial retropharyngeal lymph node and lung. Five of 14 tuberculous deer had no gross lesions; however,M bovis was isolated from pooled tissue specimens from the heads of each of these deer. Bacteriologic culture of tonsillar swab specimens from 2 of the infected deer yielded M bovis. Mean (± SEM) age of tuberculous deer was 2.5 ± 0.3 years (range, 0.5 to 6 years). Mycobacterium bovis was not isolated from feed, soil, water, or fecal samples. Conclusions and Clinical Relevance—Examination of hunter-killed white-tailed deer for tuberculosis commonly includes only the lymph nodes of the head. Results of such examinations may underestimate disease prevalence by as much as 57%. Such discrepancy should be considered when estimating disease prevalence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Maize demand for food, livestock feed, and biofuel is expected to increase substantially. The Western U.S. Corn Belt accounts for 23% of U.S. maize production, and irrigated maize accounts for 43 and 58% of maize land area and total production, respectively, in this region. The most sensitive parameters (yield potential [YP], water-limited yield potential [YP-W], yield gap between actual yield and YP, and resource-use efficiency) governing performance of maize systems in the region are lacking. A simulation model was used to quantify YP under irrigated and rainfed conditions based on weather data, soil properties, and crop management at 18 locations. In a separate study, 5-year soil water data measured in central Nebraska were used to analyze soil water recharge during the non-growing season because soil water content at sowing is a critical component of water supply available for summer crops. On-farm data, including yield, irrigation, and nitrogen (N) rate for 777 field-years, was used to quantify size of yield gaps and evaluate resource-use efficiency. Simulated average YP and YP-W were 14.4 and 8.3 Mg ha-1, respectively. Geospatial variation of YP was associated with solar radiation and temperature during post-anthesis phase while variation in water-limited yield was linked to the longitudinal variation in seasonal rainfall and evaporative demand. Analysis of soil water recharge indicates that 80% of variation in soil water content at sowing can be explained by precipitation during non-growing season and residual soil water at end of previous growing season. A linear relationship between YP-W and water supply (slope: 19.3 kg ha-1 mm-1; x-intercept: 100 mm) can be used as a benchmark to diagnose and improve farmer’s water productivity (WP; kg grain per unit of water supply). Evaluation of data from farmer’s fields provides proof-of-concept and helps identify management constraints to high levels of productivity and resource-use efficiency. On average, actual yields of irrigated maize systems were 11% below YP. WP and N-fertilizer use efficiency (NUE) were high despite application of large amounts of irrigation water and N fertilizer (14 kg grain mm-1 water supply and 71 kg grain kg-1 N fertilizer). While there is limited scope for substantial increases in actual average yields, WP and NUE can be further increased by: (1) switching surface to pivot systems, (2) using conservation instead of conventional tillage systems in soybean-maize rotations, (3) implementation of irrigation schedules based on crop water requirements, and (4) better N fertilizer management.