3 resultados para Skull - Abnormities and deformities

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

I. Gunter and Christmas (1973) described the events leading to the stranding of a baleen whale on Ship Island, Mississippi, in 1968, giving the species as Balaenopteru physalus, the Rorqual. Unfortunately the identification was in error, but fortunately good photographs were shown. The underside of the tail was a splotched white, but there was no black margin. The specimen also had fewer throat and belly grooves than the Rorqual, as a comparison with True’s (1904) photograph shows. Dr. James Mead (in litt.) pointed out that the animal was a Sei Whale, Balaenoptera borealis. This remains a new Mississippi record and according to Lowery’s (1974) count, it is the fifth specimen reported from the Gulf of Mexico. The stranding of a sixth Sei Whale on Anclote Keys in the Gulf, west of Tarpon Springs, Florida on 30 May 1974, was reported in the newspapers and by the Smithsonian Institution (1974). II. Gunter, Hubbs and Beal (1955) gave measurements on a Pygmy Sperm Whale, Kogia breviceps, which stranded on Mustang Island on the Texas coast and commented upon the recorded variations of proportional measurements in this species. Then according to Raun, Hoese and Moseley (1970) these questions were resolved by Handley (1966), who showed that a second species, Kogia simus, the Dwarf Sperm Whale, is also present in the western North Atlantic. Handley’s argument is based on skull comparisons and it seems to be rather indubitable. According to Raun et al. (op. cit.), the stranding of a species of Kogia on Galveston Island recorded by Caldwell, Ingles and Siebenaler (1960) was K. simus. They also say that Caldwell (in litt.) had previously come to the same conclusion. Caldwell et al. also recorded another specimen from Destin, Florida, which is now considered to have been a specimen of simus. The known status of these two little sperm whales in the Gulf is summarized by Lowery (op. cit.).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Black Sea is a semi-enclosed body of water that differs from the adjacent Mediterranean Sea in terms of its biodiversity, oceanographical and ecological characteristics. There is growing international concern about pollution in the Black Sea and other anthropogenic threats to its fauna. The bottlenose dolphin (Tursiops truncatus) is one of three species of cetaceans living in the Azov-Black Sea basin. Despite considerable research on bottlenose dolphins elsewhere, the extent of human impacts on the Black Sea populations is unknown. Previous attempts to award special conservation status to Black Sea cetaceans have failed specifically because policy makers have viewed their ecological and evolutionary uniqueness as equivocal. This study assessed divergence between Black Sea, Mediterranean Sea and Atlantic Ocean bottlenose dolphins for 26 cranial measurements (n = 75 adult bottlenose dolphin skulls) and mitochondrial DNA (n = 99 individuals). Black Sea bottlenose dolphins are smaller than those in the Mediterranean, and possess a uniquely shaped skull. As in a previous study, we found the Black Sea population to be genetically distinct, with relatively low levels of mtDNA diversity. Population genetic models suggest that Black Sea bottlenose dolphins have so little gene flow with the Mediterranean due to historical isolation that they should be managed separately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blast traumatic brain injury (BTBI) has become an important topic of study because of the increase of such incidents, especially due to the recent growth of improvised explosive devices (IEDs). This thesis discusses a project in which laboratory testing of BTBI was made possible by performing blast loading on experimental models simulating the human head. Three versions of experimental models were prepared – one having a simple geometry and the other two having geometry similar to a human head. For developing the head models, three important parts of the head were considered for material modeling and analysis – the skin, skull and brain. The materials simulating skin, skull and brain went through many testing procedures including dynamic mechanical analysis (DMA). For finding a suitable brain simulant, several materials were tested under low and high frequencies. Step response analysis, rheometry and DMA tests were performed on materials such as water based gels, oil based mixtures and silicone gels cured at different temperatures. The gelatins and silicone gels showed promising results toward their use as brain surrogate materials. Temperature degradation tests were performed on gelatins, indicating the fast degradation of gelatins at room temperature. Silicone gels were much more stable compared to the water based gels. Silicone gels were further processed using a thinner-type additive gel to bring the dynamic modulus values closer to those of human brain matter. The obtained values from DMA were compared to the values for human brain as found in literature. Then a silicone rubber brain mold was prepared to give the brain model accurate geometry. All the components were put together to make the entire head model. A steel mount was prepared to attach the head for testing at the end of the shock tube. Instrumentation was implemented in the head model to obtain effective results for understanding more about the possible mechanisms of BTBI. The final head model was named the Realistic Explosive Dummy Head or the “RED Head.” The RED Head offered potential for realistic experimental testing in blast loading conditions by virtue of its material properties and geometrical accuracy.