4 resultados para Shrubs.

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This State of the Arctic Report presents a review of recent data by an international group of scientists who developed a consensus on the information content and reliability. The report highlights data primarily from 2000 to 2005 with a first look at winter 2006, providing an update to some of the records of physical processes discussed in the Arctic Climate Impact Assessment (ACIA, 2004, 2005). Of particular note: • Atmospheric climate patterns are shifting (Fig. 1). The late winter/spring pattern for 2000–2005 had new hot spots in northeast Canada and the East Siberian Sea relative to 1980–1999. Late winter 2006, however, shows a return to earlier climate patterns, with warm temperatures in the extended region near Svalbard. • Ocean salinity and temperature profiles at the North Pole and in the Beaufort Sea, which changed abruptly in the 1990s, show that conditions since 2000 have relaxed toward the pre-1990 climatology, although 2001–2004 has seen an increase in northward ocean heat transport through Bering Strait (Fig. 2), which is thought to impact sea ice loss. • Sea ice extent continues to decrease. The sea ice extent in September 2005 was the minimum observed in summer during the satellite era (beginning in 1979), marking an unprecedented series of extreme ice extent minima beginning in 2002 (Fig. 3). The sea ice extent in March 2006 was also the minimum observed in winter during the satellite era. • Tundra vegetation greenness increased, primarily due to an increase in the abundance of shrubs. Boreal forest vegetation greenness decreased, possibly due to drought conditions (Fig. 4). • There is increasing interest in the stability of the Greenland ice sheet. The velocity of outlet glaciers increased in 2005 relative to 2000 and 1995, but uncertainty remains with regard to the total mass balance. • Permafrost temperatures continue to increase. However, data on changes in the active layer thickness (the relatively thin layer of ground between the surface and permafrost that undergoes seasonal freezing and thawing) are less conclusive. While some of the sites show a barely noticeable increasing trend in the thickness of the active layer, most of them do not. • Globally, 2005 was the warmest year in the instrumental record (beginning in 1880), with the Arctic providing a large contribution toward this increase. Many of the trends documented in the ACIA are continuing, but some are not. Taken collectively, the observations presented in this report indicate that during 2000–2005 the Arctic system showed signs of continued warming. However, there are a few indications that certain elements may be recovering and returning to recent climatological norms (for example, the central Arctic Ocean and some wind patterns). These mixed tendencies further illustrate the sensitivity and complexity of the Arctic physical system. They underline the importance of maintaining and expanding efforts to observe and better understand this important component of the climate system to provide accurate predictions of its future state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In response to the increasing global demand for energy, oil exploration and development are expanding into frontier areas of the Arctic, where slow-growing tundra vegetation and the underlying permafrost soils are very sensitive to disturbance. The creation of vehicle trails on the tundra from seismic exploration for oil has accelerated in the past decade, and the cumulative impact represents a geographic footprint that covers a greater extent of Alaska’s North Slope tundra than all other direct human impacts combined. Seismic exploration for oil and gas was conducted on the coastal plain of the Arctic National Wildlife Refuge, Alaska, USA, in the winters of 1984 and 1985. This study documents recovery of vegetation and permafrost soils over a two-decade period after vehicle traffic on snow-covered tundra. Paired permanent vegetation plots (disturbed vs. reference) were monitored six times from 1984 to 2002. Data were collected on percent vegetative cover by plant species and on soil and ground ice characteristics. We developed Bayesian hierarchical models, with temporally and spatially autocorrelated errors, to analyze the effects of vegetation type and initial disturbance levels on recovery patterns of the different plant growth forms as well as soil thaw depth. Plant community composition was altered on the trails by species-specific responses to initial disturbance and subsequent changes in substrate. Long-term changes included increased cover of graminoids and decreased cover of evergreen shrubs and mosses. Trails with low levels of initial disturbance usually improved well over time, whereas those with medium to high levels of initial disturbance recovered slowly. Trails on ice-poor, gravel substrates of riparian areas recovered better than those on ice-rich loamy soils of the uplands, even after severe initial damage. Recovery to pre-disturbance communities was not possible where trail subsidence occurred due to thawing of ground ice. Previous studies of disturbance from winter seismic vehicles in the Arctic predicted short-term and mostly aesthetic impacts, but we found that severe impacts to tundra vegetation persisted for two decades after disturbance under some conditions. We recommend management approaches that should be used to prevent persistent tundra damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We begin the 2001 Master Conservationist program with honorees in production agriculture from District A which includes the Panhandle of Nebraska. I would like to ask Leon and Cheryl Burkhart-Kriesel (Kresel) of Gurley who are unable to be present. They operated the family farm in partnership with Fred and Viola Kriesel until 1984 when Leon and Cheryl become sole owners/operators. The Kriesels produce certified wheat, millet, oats, and barley seed on 3200 dryland acres that are owned, rented, or contracted. Since 1984, 45,000 feet of terraces have been installed. Their holistic conservation plan also includes over 57,000 feet of windbreaks of mixed evergreen and broadleaf trees and shrubs. This mixture of plant species is unique in the Panhandle. They built an earthen dam with 11 acre-feet of permanent storage and 70.5 acre-feet of detention storage. Results include reduced soil erosion by wind and water, and increased productivity and wildlife populations. Local and international groups tour the farm. Congratulations to the Kriesels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prairie dog (Cynomys ludovicianus) control has historically consisted of lethal methods to maintain, reduce, or eliminate populations in South Dakota and throughout the species range. Non-lethal methods of control are desired to meet changing management objectives for the black-tailed prairie dog. The use of naturally occurring buffer strips as vegetative barriers may be effective in limiting prairie dog town expansion. The objectives of this study were: 1) to evaluate effective width of vegetative barriers in limiting prairie dog towns expansion in western South Dakota; and 2) to document effect native vegetation height on expansion of prairie dog towns in western South Dakota. Five study sites were established in western South Dakota on rangelands containing prairie dog towns of adequate size. Electric fences were constructed for the purpose of excluding cattle and creating buffer strips of native grasses and shrubs. Prairie dogs were poisoned to create a prairie dog free buffer zone adjacent to active prairie dog towns. Grazing was allowed on both sides of the buffer strip. When grazing pressure was not sufficient, mowing was used to simulate grazing. Buffer strips were 100 meters long and 10, 25, and 40 meters in width. A zero meter control was included on all study sites. Quadrats (25) were randomly distributed throughout the buffer strips. Evaluation of study sites included visual obstruction, vegetation cover, vegetation frequency, vegetation height, and vegetation identification. Barrier penetration was evaluated by the presence of new active burrows behind vegetative barriers. Significant relationships were documented for both VOR and vegetation height. No significant difference was found between frequency of breakthroughs and buffer widths.