6 resultados para Shared Competence

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the ability of experimentally inoculated white-tailed deer (Odocoileus virginianus) to transmit Mycobacterium bovis to naive deer through the sharing of feed, four deer were intratonsillarly inoculated with 4x105 colony-forming units of M. bovis. On a daily basis, feed not consumed by inoculated deer after approximately 8 hr was offered to four naıve deer maintained in a separate pen, where direct contact, aerosol transmission, or transmission through personnel were prevented. After 150 days, naıve deer were euthanized and examined. All naıve deer had lesions consistent with tuberculosis and M. bovis was isolated from various tissues. The most commonly affected tissues were lung, tracheobronchial lymph nodes, and mediastinal lymph nodes. This study demonstrates the potential for indirect transmission of M. bovis through the sharing of feed. Intentional or unintentional feeding of deer by wildlife or agricultural interests in regions where M. bovis infection is endemic should be avoided because both direct and indirect transmission through sharing of feed are enhanced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of survivable lightpath provisioning in wavelength-division-multiplexing (WDM) mesh networks, taking into consideration optical-layer protection and some realistic optical signal quality constraints. The investigated networks use sparsely placed optical–electrical–optical (O/E/O) modules for regeneration and wavelength conversion. Given a fixed network topology with a number of sparsely placed O/E/O modules and a set of connection requests, a pair of link-disjoint lightpaths is established for each connection. Due to physical impairments and wavelength continuity, both the working and protection lightpaths need to be regenerated at some intermediate nodes to overcome signal quality degradation and wavelength contention. In the present paper, resource-efficient provisioning solutions are achieved with the objective of maximizing resource sharing. The authors propose a resource-sharing scheme that supports three kinds of resource-sharing scenarios, including a conventional wavelength-link sharing scenario, which shares wavelength links between protection lightpaths, and two new scenarios, which share O/E/O modules between protection lightpaths and between working and protection lightpaths. An integer linear programming (ILP)-based solution approach is used to find optimal solutions. The authors also propose a local optimization heuristic approach and a tabu search heuristic approach to solve this problem for real-world, large mesh networks. Numerical results show that our solution approaches work well under a variety of network settings and achieves a high level of resource-sharing rates (over 60% for O/E/O modules and over 30% for wavelength links), which translate into great savings in network costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wavelength-routed networks (WRN) are very promising candidates for next-generation Internet and telecommunication backbones. In such a network, optical-layer protection is of paramount importance due to the risk of losing large amounts of data under a failure. To protect the network against this risk, service providers usually provide a pair of risk-independent working and protection paths for each optical connection. However, the investment made for the optical-layer protection increases network cost. To reduce the capital expenditure, service providers need to efficiently utilize their network resources. Among all the existing approaches, shared-path protection has proven to be practical and cost-efficient [1]. In shared-path protection, several protection paths can share a wavelength on a fiber link if their working paths are risk-independent. In real-world networks, provisioning is usually implemented without the knowledge of future network resource utilization status. As the network changes with the addition and deletion of connections, the network utilization will become sub-optimal. Reconfiguration, which is referred to as the method of re-provisioning the existing connections, is an attractive solution to fill in the gap between the current network utilization and its optimal value [2]. In this paper, we propose a new shared-protection-path reconfiguration approach. Unlike some of previous reconfiguration approaches that alter the working paths, our approach only changes protection paths, and hence does not interfere with the ongoing services on the working paths, and is therefore risk-free. Previous studies have verified the benefits arising from the reconfiguration of existing connections [2] [3] [4]. Most of them are aimed at minimizing the total used wavelength-links or ports. However, this objective does not directly relate to cost saving because minimizing the total network resource consumption does not necessarily maximize the capability of accommodating future connections. As a result, service providers may still need to pay for early network upgrades. Alternatively, our proposed shared-protection-path reconfiguration approach is based on a load-balancing objective, which minimizes the network load distribution vector (LDV, see Section 2). This new objective is designed to postpone network upgrades, thus bringing extra cost savings to service providers. In other words, by using the new objective, service providers can establish as many connections as possible before network upgrades, resulting in increased revenue. We develop a heuristic load-balancing (LB) reconfiguration approach based on this new objective and compare its performance with an approach previously introduced in [2] and [4], whose objective is minimizing the total network resource consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Establishing a fault-tolerant connection in a network involves computation of diverse working and protection paths. The Shared Risk Link Group (SRLG) [1] concept is used to model several types of failure conditions such as link, node, fiber conduit, etc. In this work we focus on the problem of computing optimal SRLG/link diverse paths under shared protection. Shared protection technique improves network resource utilization by allowing protection paths of multiple connections to share resources. In this work we propose an iterative heuristic for computing SRLG/link diverse paths. We present a method to calculate a quantitative measure that provides a bounded guarantee on the optimality of the diverse paths computed by the heuristic. The experimental results on computing link diverse paths show that our proposed heuristic is efficient in terms of number of iterations required (time taken) to compute diverse paths when compared to other previously proposed heuristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Network survivability is one of the most important issues in the design of optical WDM networks. In this work we study the problem of survivable routing of a virtual topology on a physical topology with Shared Risk Link Groups (SRLG). The survivable virtual topology routing problem against single-link failures in the physical topology is proved to be NP-complete in [1]. We prove that survivable virtual topology routing problem against SRLG/node failures is also NP-complete. We present an improved integer linear programming (ILP) formulation (in comparison to [1]) for computing the survivable routing under SRLG/node failures. Using an ILP solver, we computed the survivable virtual topology routing against link and SRLG failures for small and medium sized networks efficiently. As even our improved ILP formulation becomes intractable for large networks, we present a congestion-based heuristic and a tabu search heuristic (which uses the congestion-based heuristic solution as the initial solution) for computing survivable routing of a virtual topology. Our experimental results show that tabu search heuristic coupled with the congestion based heuristic (used as initial solution) provides fast and near-optimal solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We live and work in a world that is even more interconnected and interdependent than ever before. Engineers must now not only develop technical engineering competence, but must also develop additional skills and competencies including global competence to obtain success within a global engineering environment. The purpose of this study was to determine whether multinational companies considered global competence an important skill in mechanical engineering graduates when making hiring decisions. The study was an exploratory study that utilized an extensive literature review to identify eight global competencies for engineering success within a global environment and also included a survey instrument completed by Brigham Young University (BYU) mechanical engineering alumni in 48 states and 17 countries. The study focused on an evaluation of standard hiring technical engineering competencies with eight global competencies identified in the literature review. The study established that standard engineering technical competencies were the most important consideration when hiring mechanical engineers, but global competence was also considered important by a majority of all survey respondents with six of the eight global competencies rated important by 79 to 91% of respondents with an ability to communicate cross-culturally the highest-rated global competence. The importance of global competence in engineers when making hiring decisions, as considered by large companies who employed more than 10,000 employees or who had annual revenue exceeding $1 billion (US$) per year, was particularly strong. The majority of respondents (70%) indicated that companies were willing to provide training and experience to help engineers obtain success in a global engineering environment. In addition, a majority of respondents (59.9%) indicated that companies valued the efforts of higher educational engineering institutions to prepare engineers for success in a global environment with only 4.8% of respondents indicating that they did not value the efforts of higher education engineering institutions. However, only 27% of respondents agreed that colleges and universities were successful in this endeavor. Globalization is not a passing phenomenon, it is here to stay. Colleges and universities throughout the world need to recognize the importance of globalization and the interdependence and interconnectedness among the world’s population. Therefore, it is important to identify, develop, and provide opportunities for international collaboration and interaction among students and faculty throughout the world and to focus on developing global competence as an important outcome for engineering graduates.