1 resultado para Screening analysis
em DigitalCommons@University of Nebraska - Lincoln
Filtro por publicador
- Aberdeen University (6)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (21)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (47)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (4)
- CentAUR: Central Archive University of Reading - UK (12)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (28)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (8)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (5)
- DigitalCommons@The Texas Medical Center (36)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- FUNDAJ - Fundação Joaquim Nabuco (3)
- Glasgow Theses Service (1)
- Helda - Digital Repository of University of Helsinki (7)
- Hospitais da Universidade de Coimbra (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (12)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico do Porto, Portugal (1)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (17)
- Nottingham eTheses (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (60)
- Queensland University of Technology - ePrints Archive (447)
- Repositorio Academico Digital UANL (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (50)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (2)
- Scielo España (1)
- Scielo Uruguai (1)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (6)
- Universidade Complutense de Madrid (2)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Técnica de Lisboa (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (6)
- Université de Montréal (1)
- Université de Montréal, Canada (3)
- University of Connecticut - USA (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (15)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Static analysis tools report software defects that may or may not be detected by other verification methods. Two challenges complicating the adoption of these tools are spurious false positive warnings and legitimate warnings that are not acted on. This paper reports automated support to help address these challenges using logistic regression models that predict the foregoing types of warnings from signals in the warnings and implicated code. Because examining many potential signaling factors in large software development settings can be expensive, we use a screening methodology to quickly discard factors with low predictive power and cost-effectively build predictive models. Our empirical evaluation indicates that these models can achieve high accuracy in predicting accurate and actionable static analysis warnings, and suggests that the models are competitive with alternative models built without screening.