4 resultados para STEM MULTISYNAPTIC CONNECTIONS
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
In this action research study of my Class I School’s 5th and 8th grade mathematics, I investigated students’ connections between communication of math skills and their math abilities. I discovered that students can increase their math abilities with the opportunities to discuss their thinking as well as evaluate thinking and strategies of other students. Electronic communication can be a valuable source for students to communicate further to other students.
Resumo:
In this action research study of sixth grade mathematics, I investigate how the use of written journals facilitates the learning of mathematics for my students. I explore furthermore whether or not these writing journals support students to complete their homework. My analysis reveals that while students do not access their journals daily, when students have the opportunity to write more about one specific problem--such as finding the relationship between the area of two different sized rectangles – they, are nevertheless, more likely to explain their thoughts in-depth and go beyond the traditional basic steps to arrive at a solution. This suggests the value of integrating journal writing in a math curriculum as it can facilitate classroom discussion from the students’ written work.
Resumo:
In this action research study of my classroom of seventh grade mathematics, I investigated the use of non-traditional activities to enhance mathematical connections. The types of nontraditional activities used were hands-on activities, written explanations, and oral communication that required students to apply a new mathematical concept to either prior knowledge or a realworld application. I discovered that the use of non-traditional activities helped me reach a variety of learners in my classroom. These activities also increased my students’ abilities to apply their mathematical knowledge to different applications. Having students explain their reasoning during non-traditional activities improved their communications skills, both orally and in writing. As a result of this research, I plan to incorporate more non-traditional activities into my curriculum. In doing so, I hope to continue to increase my students’ abilities to solve problems. I also plan to incorporate the use of written explanations of my students’ mathematical reasoning in order to continue to improve their communication of mathematics.
Resumo:
The decreasing number of women who are graduating in the Science, Technology, Engineering and Mathematics (STEM) fields continues to be a major concern. Despite national support in the form of grants provided by National Science Foundation, National Center for Information and Technology and legislation passed such as the Deficit Reduction Act of 2005 that encourages women to enter the STEM fields, the number of women actually graduating in these fields is surprisingly low. This research study focuses on a robotics competition and its ability to engage female adolescents in STEM curricula. Data have been collected to help explain why young women are reticent to take technology or engineering type courses in high school and college. Factors that have been described include attitudes, parental support, social aspects, peer pressure, and lack of role models. Often these courses were thought to have masculine and “nerdy” overtones. The courses were usually majority male enrollments and appeared to be very competitive. With more female adolescents engaging in this type of competitive atmosphere, this study gathered information to discover what about the competition appealed to these young women. Focus groups were used to gather information from adolescent females who were participating in the First Lego League (FLL) and CEENBoT competitions. What enticed them to participate in a curriculum that data demonstrated many of their peers avoided? FLL and CEENBoT are robotics programs based on curricula that are taught in afterschool programs in non-formal environments. These programs culminate in a very large robotics competition. My research questions included: What are the factors that encouraged participants to participate in the robotics competition? What was the original enticement to the FLL and CEENBoT programs? What will make participants want to come back and what are the participants’ plans for the future? My research mirrored data of previous findings such as lack of role models, the need for parental support, social stigmatisms and peer pressure are still major factors that determine whether adolescent females seek out STEM activities. An interesting finding, which was an exception to previous findings, was these female adolescents enjoyed the challenge of the competition. The informal learning environments encouraged an atmosphere of social engagement and cooperative learning. Many volunteers that led the afterschool programs were women (role models) and a majority of parents showed support by accommodating an afterschool situation. The young women that were engaged in the competition noted it was a friendly competition, but they were all there to win. All who participated in the competition had a similar learning environment: competitive but cooperative. Further research is needed to determine if it is the learning environment that lures adolescent females to the program and entices them to continue in the STEM fields or if it is the competitive aspect of the culminating activity. Advisors: James King and Allen Steckelberg