3 resultados para SOFTWARE APPLICATIONS
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
1. Distance sampling is a widely used technique for estimating the size or density of biological populations. Many distance sampling designs and most analyses use the software Distance. 2. We briefly review distance sampling and its assumptions, outline the history, structure and capabilities of Distance, and provide hints on its use. 3. Good survey design is a crucial prerequisite for obtaining reliable results. Distance has a survey design engine, with a built-in geographic information system, that allows properties of different proposed designs to be examined via simulation, and survey plans to be generated. 4. A first step in analysis of distance sampling data is modeling the probability of detection. Distance contains three increasingly sophisticated analysis engines for this: conventional distance sampling, which models detection probability as a function of distance from the transect and assumes all objects at zero distance are detected; multiple-covariate distance sampling, which allows covariates in addition to distance; and mark–recapture distance sampling, which relaxes the assumption of certain detection at zero distance. 5. All three engines allow estimation of density or abundance, stratified if required, with associated measures of precision calculated either analytically or via the bootstrap. 6. Advanced analysis topics covered include the use of multipliers to allow analysis of indirect surveys (such as dung or nest surveys), the density surface modeling analysis engine for spatial and habitat-modeling, and information about accessing the analysis engines directly from other software. 7. Synthesis and applications. Distance sampling is a key method for producing abundance and density estimates in challenging field conditions. The theory underlying the methods continues to expand to cope with realistic estimation situations. In step with theoretical developments, state-of- the-art software that implements these methods is described that makes the methods accessible to practicing ecologists.
Resumo:
Not long ago, most software was written by professional programmers, who could be presumed to have an interest in software engineering methodologies and in tools and techniques for improving software dependability. Today, however, a great deal of software is written not by professionals but by end-users, who create applications such as multimedia simulations, dynamic web pages, and spreadsheets. Applications such as these are often used to guide important decisions or aid in important tasks, and it is important that they be sufficiently dependable, but evidence shows that they frequently are not. For example, studies have shown that a large percentage of the spreadsheets created by end-users contain faults, and stories abound of spreadsheet faults that have led to multi-million dollar losses. Despite such evidence, until recently, relatively little research had been done to help end-users create more dependable software.
Resumo:
Not long ago, most software was written by professional programmers, who could be presumed to have an interest in software engineering methodologies and in tools and techniques for improving software dependability. Today, however, a great deal of software is written not by professionals but by end-users, who create applications such as multimedia simulations, dynamic web pages, and spreadsheets. Applications such as these are often used to guide important decisions or aid in important tasks, and it is important that they be sufficiently dependable, but evidence shows that they frequently are not. For example, studies have shown that a large percentage of the spreadsheets created by end-users contain faults. Despite such evidence, until recently, relatively little research had been done to help end-users create more dependable software. We have been working to address this problem by finding ways to provide at least some of the benefits of formal software engineering techniques to end-user programmers. In this talk, focusing on the spreadsheet application paradigm, I present several of our approaches, focusing on methodologies that utilize source-code-analysis techniques to help end-users build more dependable spreadsheets. Behind the scenes, our methodologies use static analyses such as dataflow analysis and slicing, together with dynamic analyses such as execution monitoring, to support user tasks such as validation and fault localization. I show how, to accommodate the user base of spreadsheet languages, an interface to these methodologies can be provided in a manner that does not require an understanding of the theory behind the analyses, yet supports the interactive, incremental process by which spreadsheets are created. Finally, I present empirical results gathered in the use of our methodologies that highlight several costs and benefits trade-offs, and many opportunities for future work.