4 resultados para SINUS ELEVATION

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterochrony, the change in timing of developmental processes, is thought to be a key process shaping the numerous limb morphologies of tetrapods. Through a delayed offset in digit development, all cetaceans (i.e., whales, dolphins, and porpoises) have evolved supernumary phalanges (hyperphalangy). Moreover, some toothed cetaceans further alter digital morphologies by delayed endochondral and perichondral ossification of individual elements. In the harbor porpoise (Phocoena phocoena), these paedomorphic patterns have created poorly ossified phalangeal elements. However, no studies have addressed this morphology in other porpoise taxa. This study documents the timing of carpal and digital epiphyseal ossification in the poorly studied vaquita (Phocoena sinus) based on radiographs (n = 18) of known-age specimens. Patterns of vaquita manus ossification were compared between other porpoise and delphinid taxa. Adult vaquitas are paedomorphic in carpal, metacarpal, and digital development as they maintain a juvenile ossification pattern relative to that of other porpoise species of equivalent ages. Vaquitas also ossify fewer carpal elements as compared to other porpoise and some delphinid cetaceans, and ossification arrests relative to that of the harbor porpoise. Vaquitas also display sexual dimorphism as females reach a greater body size and display more ossified elements in the manus relative to their paedomorphic male cohorts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Order Cetacea, Suborder Odontoceti, Superfamily Delphinoidea, Family Phocoenidae. Four species are included in the genus. No subspecies are recognized in P. sinus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the geographic and environmental characteristics of islands that affect aspects of biodiversity is a major theme in ecology (Begon et al. 2006; Krebs 2001) and biogeography (Cox and Moore 2000; Drakare et al. 2006; Lomolino et al. 2006). Such understanding has become particularly relevant over the past century because human activities on continents have fragmented natural landscapes, often creating islands of isolated habitat dispersed within a sea of land uses that include agriculture, forestry, and various degrees of urban and suburban development. The increasingly fragmented or islandlike structure of mainland habitats has critical ramifications to conservation biology, as it provides insights regarding the mechanisms leading to species persistence and loss. Consequently, the study of patterns and mechanisms associated with island biodiversity is of interest in its own right (Whittaker 1998; Williamson 1981), and may provide critical insights into mainland phenomena that otherwise could not be studied because of ethical, financial, or logistical considerations involved with the execution of large-scale manipulative experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alpine glaciers have receded substantially over the last century in many regions of the world. Resulting changes in glacial runoff not only affect the hydrological cycle, but can also alter the physical (i.e., turbidity from glacial flour) and biogeochemical properties of downstream ecosystems. Here we compare nutrient concentrations, transparency gradients, algal biomass, and fossil diatom species richness in two sets of high-elevation lakes: those fed by snowpack melt alone (SF lakes) and those fed by both glacial and snowpack meltwaters (GSF lakes). We found that nitrate (NO3-) concentrations in the GSF lakes were 1-2 orders of magnitude higher than in SF lakes. Although nitrogen (N) limitation is common in alpine lakes, algal biomass was lower in highly N-enriched GSF lakes than in the N-poor SF lakes. Contrary to expectations, GSF lakes were more transparent than SF lakes to ultraviolet and equally transparent to photosynthetically active radiation.Sediment diatom assemblages had lower taxonomic richness in the GSF lakes, a feature that has persisted over the last century. Our results demonstrate that the presence of glaciers on alpine watersheds more strongly influences NO3- concentrations in high-elevation lake ecosystems than any other geomorphic or biogeographic characteristic.