5 resultados para Rotation of crops

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Broad-spectrum herbicide applications and improved harvesting efficiency of crops have reduced the availability of weed seeds and waste grains for game and nongame wildlife. Over the last decade, corn and soybean plantings have steadily increased in the Prairie Pothole Region (PPR) of North Dakota, while sunflower plantings have declined. The PPR is an important corridor for migratory birds, and changes in food availabilities at stopover habitats may affect how food resources are used. In early spring 2003 and 2004, we compared bird use of harvested fields of sunflower, soybeans, small grains, and corn in the PPR of North Dakota. Across both years and all crop types, we observed 20,400 birds comprising 29 species. Flocks of Lapland Longspurs (Calcarius lapponicus) and Horned Larks (Eremophila alpestris) and flocks of Red-winged Blackbirds (Agelaius phoeniceus) made up 60% and 15%, respectively, of the bird counts. We found that species richness and bird densities were higher in harvested sunflower fields and cornfields than in harvested small-grain and soybean fields, with soybean fields harboring the fewest species and lowest bird density. Blackbird densities tended to be lower in fields tilled after fall harvest than in fields not tilled. These results suggest that some granivorous bird populations in the Northern Great Plains could be positively affected by planting of row crops with postharvest vertical structure (e.g., sunflower, corn) and use of no-till land management practices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The expansion of the cellulosic biofuels industry throughout the United States has broad-scale implications for wildlife management on public and private lands. Knowledge is limited on the effects of reverting agriculture to native grass, and vice versa, on size of home range and habitat use of white-tailed deer (Odocoileus virginianus). We followed 68 radio-collared female deer from 1991 through 2004 that were residents of DeSoto National Wildlife Refuge (DNWR) in eastern Nebraska, USA. The refuge was undergoing conversion of vegetation out of row-crop agriculture and into native grass, forest, and emergent aquatic vegetation. Habitat in DNWR consisted of 30% crop in 1991 but removing crops to establish native grass and wetland habitat at DNWR resulted in a 44% reduction in crops by 2004. A decrease in the amount of crops on DNWR contributed to a decline in mean size of annual home range from 400 ha in 1991 to 200 ha in 2005 but percentage of crops in home ranges increased from 21% to 29%. Mean overlap for individuals was 77% between consecutive annual home ranges across 8 years, regardless of crop availability. Conversion of crop to native habitat will not likely result in home range abandonment but may impact disease transmission by increasing rates of contact between deer social groups that occupy adjacent areas. Future research on condition indices or changes in population parameters (e.g., recruitment) could be incorporated into the study design to assess impacts of habitat conversion for biofuel production.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This NebGuide describes the life cycle of the army cutworm and pale western cutworm, and provides recommendations for management.The army cutworm, Euxoa auxiliaris, and the pale western cutworm, Agrotis orthogonia, are sporadic pests that are distributed throughout the Great Plains. The army cutworm can be found throughout Nebraska, but is more common in the western half of the state. Because of the drier environment, the pale western cutworm is found only in the western third of Nebraska. Both cutworms can feed on a vast array of crops and weeds. Their major economic impact is limited to winter wheat and alfalfa, because these are the vulnerable crops growing in the early spring when larval feeding activity occurs. However, they can also cause substantial damage to early spring row crops (sugarbeets and corn), especially in areas where winter cereal cover crops are used.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To many people, California is synonomous with Disneyland, freeways, Los Angeles smog, Yosemite, the California missions, or for you bird aficionados, the California Condor. But do you think about California when you eat strawberry shortcake? You should -- California leads the nation in strawberry production. How about artichokes? California produces over 98% of the artichokes raised in the United States. Dates? California produces over 99% of the dates in the United States. Yes, California is all of these, and it is much more. California may well be the most diverse state in the United States. Within its 100.2 million acres, California has the lowest place in the U.S. in Death Valley and one of the highest mountains with Mt. Whitney. Because California is such a diverse state and has a wide variety of micro- climates, it supports a uniquely diverse agriculture. Agriculture uses only about 36 million acres of its total 100.2 million acres, and most of the cash return from crops is produced on 8,6 million acres that are irrigated. California produces about 250 crops and livestock commodities (excluding nursery crops) and provides the U.S. with about 25% of its table foods. California leads the nation in the production of 46 commercial crops and livestock commodities; its farmers and ranchers marketed $8.6 billion of crop and livestock products in 1975, and the state’s harvested farm production in 1975 set a new record at 51.1 million tons. HISTORY OF BIRD PROBLEMS Records such as this are not achieved without some risk. Crops growing in Cali- fornia have always had competition from many types of vertebrate pests. The wide variety of crops grown in California and the varied climates and situations in which they are grown has resulted in many different species of birds damaging crops. Birds have compet- ed with man for his crops since the dawn of agriculture. McAtee (1932) cited examples of bird damage that occurred in a wide variety of crops in California during the early 1900s. During the 1920s, many requests for Information and relief from damage caused by a wide variety of birds, culminated in the assignment, in May 1929, of two biologists, S. E. Piper and Johnson Neff, of the former U.S. Bio- logical Survey, to initiate field studies in California. In cooperation with the Cali- fornia Department of Food and Agriculture and County Agricultural Commissioners, the study was to determine the problems and devise control procedures relative to bird depredations. Piper and Neff found such damage as Horned Larks pulling sprouting crops, House Finches disbudding deciduous fruit trees and devouring mature fruit. Blackbirds were a problem in the rice crop. Early controls were varied and, for the most part, lacked effectiveness. Flagging of fields was common to deter Horned Larks. Windmill devices were tried to frighten birds. Shooting to kill birds was common; scarecrows were.used. The six-year study brought forth the basis of most of the depredating bird control techniques still in use in California. At the end of the study, these two biologists compiled a book called “Procedure and Methods in Controlling Birds Injurious to Crops in California.” This was and still is the “Bible” for bird damage control techniques used in California. The thorough investigations conducted by these biologists resulted in techniques that have remained valid in California for over 40 years.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we propose a Layered Clustering Hierarchy (LCH) communication protocol for Wireless Sensor Networks (WSNs). The design of LCH has two goals: scalability and energy-efficiency. In LCH, the sensor nodes are organized as a layered clustering structure. Each layer runs a distributed clustering protocol. By randomizing the rotation of cluster heads in each layer, the energy load is distributed evenly across sensors in the network. Our simulations show that LCH is effective in densely deployed sensor networks. On average, 70% of live sensor nodes are involved directly in the clustering communication hierarchy. Moreover, the simulations also show that the energy load and dead nodes are distributed evenly over the network. As studies prove that the performance of LCH depends mainly on the distributed clustering protocol, the location of cluster heads and cluster size are two critical factors in the design of LCH.