4 resultados para Resource use
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Maize demand for food, livestock feed, and biofuel is expected to increase substantially. The Western U.S. Corn Belt accounts for 23% of U.S. maize production, and irrigated maize accounts for 43 and 58% of maize land area and total production, respectively, in this region. The most sensitive parameters (yield potential [YP], water-limited yield potential [YP-W], yield gap between actual yield and YP, and resource-use efficiency) governing performance of maize systems in the region are lacking. A simulation model was used to quantify YP under irrigated and rainfed conditions based on weather data, soil properties, and crop management at 18 locations. In a separate study, 5-year soil water data measured in central Nebraska were used to analyze soil water recharge during the non-growing season because soil water content at sowing is a critical component of water supply available for summer crops. On-farm data, including yield, irrigation, and nitrogen (N) rate for 777 field-years, was used to quantify size of yield gaps and evaluate resource-use efficiency. Simulated average YP and YP-W were 14.4 and 8.3 Mg ha-1, respectively. Geospatial variation of YP was associated with solar radiation and temperature during post-anthesis phase while variation in water-limited yield was linked to the longitudinal variation in seasonal rainfall and evaporative demand. Analysis of soil water recharge indicates that 80% of variation in soil water content at sowing can be explained by precipitation during non-growing season and residual soil water at end of previous growing season. A linear relationship between YP-W and water supply (slope: 19.3 kg ha-1 mm-1; x-intercept: 100 mm) can be used as a benchmark to diagnose and improve farmer’s water productivity (WP; kg grain per unit of water supply). Evaluation of data from farmer’s fields provides proof-of-concept and helps identify management constraints to high levels of productivity and resource-use efficiency. On average, actual yields of irrigated maize systems were 11% below YP. WP and N-fertilizer use efficiency (NUE) were high despite application of large amounts of irrigation water and N fertilizer (14 kg grain mm-1 water supply and 71 kg grain kg-1 N fertilizer). While there is limited scope for substantial increases in actual average yields, WP and NUE can be further increased by: (1) switching surface to pivot systems, (2) using conservation instead of conventional tillage systems in soybean-maize rotations, (3) implementation of irrigation schedules based on crop water requirements, and (4) better N fertilizer management.
Resumo:
ABSTRACT This thesis will determine if there is a discrepancy between how literature defines conservation, preservation, and restoration, and how natural resource professionals define these terms. Interviews were conducted with six professionals from six different agencies that deal with natural resources. These agencies consisted of both government and non-government groups. In addition to interviewing these professionals regarding how they define the terms, they were asked where their work fits into the context of these terms. The interviewees’ responses were then compared with the literature to determine inconsistencies with the use of these terms in the literature and real world settings. The literature and the interviewees have agreed on the term conservation. There are some different points of view about preservation, some see it as ‘no management’ and some others see it as keeping things the same or ‘static.’ Restoration was the term where both the literature and professionals thought of moving an ecosystem from one point of succession or community, to another point on a continuum. The only thing in which they disagree on is the final goal of a restoration project. The literature would suggest restoring the ecosystem to a past historic condition, where the interviewees said to restore it to the best of their abilities and to a functioning ecosystem.
Resumo:
Moose Alces alces gigas in Alaska, USA, exhibit extreme sexual dimorphism, with adult males possessing large, elaborate antlers. Antler size and conformation are influenced by age, nutrition and genetics, and these bony structures serve to establish social rank and affect mating success. Population density, combined with anthropogenic effects such as harvest, is thought to influence antler size. Antler size increased as densities of moose decreased, ostensibly a density-dependent response related to enhanced nutrition at low densities. The vegetation type where moose were harvested also affected antler size, with the largest-antlered males occupying more open habitats. Hunts with guides occurred in areas with low moose density, minimized hunter interference and increased rates of success. Such hunts harvested moose with larger antler spreads than did non-guided hunts. Knowledge and abilities allowed guides to satisfy demands of trophy hunters, who are an integral part of the Alaskan economy. Heavy harvest by humans was also associated with decreased antler size of moose, probably via a downward shift in the age structure of the population resulting in younger males with smaller antlers. Nevertheless, density-dependence was more influential than effects of harvest on age structure in determining antler size of male moose. Indeed, antlers are likely under strong sexual selection, but we demonstrate that resource availability influenced the distribution of these sexually selected characters across the landscape. We argue that understanding population density in relation to carrying capacity (K) and the age structure of males is necessary to interpret potential consequences of harvest on the genetics of moose and other large herbivores. Our results provide researchers and managers with a better understanding of variables that affect the physical condition, antler size, and perhaps the genetic composition of populations, which may be useful in managing and modeling moose populations.
Resumo:
We propose a general framework for the analysis of animal telemetry data through the use of weighted distributions. It is shown that several interpretations of resource selection functions arise when constructed from the ratio of a use and availability distribution. Through the proposed general framework, several popular resource selection models are shown to be special cases of the general model by making assumptions about animal movement and behavior. The weighted distribution framework is shown to be easily extended to readily account for telemetry data that are highly auto-correlated; as is typical with use of new technology such as global positioning systems animal relocations. An analysis of simulated data using several models constructed within the proposed framework is also presented to illustrate the possible gains from the flexible modeling framework. The proposed model is applied to a brown bear data set from southeast Alaska.