1 resultado para Realized Kernel
em DigitalCommons@University of Nebraska - Lincoln
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (1)
- Aston University Research Archive (17)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (51)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (9)
- Brunel University (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CentAUR: Central Archive University of Reading - UK (21)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (7)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (152)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (114)
- Galway Mayo Institute of Technology, Ireland (1)
- Instituto Politécnico do Porto, Portugal (62)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (24)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (11)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (48)
- Repositório da Escola Nacional de Administração Pública (ENAP) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (27)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (11)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (10)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (33)
- Scielo Saúde Pública - SP (79)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (10)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (29)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (105)
- Université de Montréal, Canada (5)
- University of Michigan (7)
- University of Queensland eSpace - Australia (51)
Resumo:
The multiple-instance learning (MIL) model has been successful in areas such as drug discovery and content-based image-retrieval. Recently, this model was generalized and a corresponding kernel was introduced to learn generalized MIL concepts with a support vector machine. While this kernel enjoyed empirical success, it has limitations in its representation. We extend this kernel by enriching its representation and empirically evaluate our new kernel on data from content-based image retrieval, biological sequence analysis, and drug discovery. We found that our new kernel generalized noticeably better than the old one in content-based image retrieval and biological sequence analysis and was slightly better or even with the old kernel in the other applications, showing that an SVM using this kernel does not overfit despite its richer representation.