3 resultados para Rahbek, Kamma i.e. Karen Margarethe (Heger) 1775-1829.
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Gray whales are coastal migratory baleen whales that are benthic feeders. Most of their feeding takes place in the northern Pacific Ocean with opportunistic feeding taking place during their migrations and residence on the breeding grounds. The concentrations of organochlorines and trace elements were determined in tissues and stomach contents of juvenile gray whales that were taken on their Arctic feeding grounds in the western Bering Sea during a Russian subsistence harvest. These concentrations were compared to previously published data for contaminants in gray whales that stranded along the west coast of the US during their northbound migration. Feeding in coastal waters during their migrations may present a risk of exposure to toxic chemicals in some regions. The mean concentration (standard error of the mean, SEM) of Σ PCBs [1400 (130) ng/g, lipid weight] in the blubber of juvenile subsistence whales was significantly lower than the mean level [27 000 (11 000) ng/g, lipid weight] reported previously in juvenile gray whales that stranded in waters off the west coast of the US. Aluminum in stomach contents of the subsistence whales was high compared to other marine mammal species, which is consistent with the ingestion of sediment during feeding. Furthermore, the concentrations of potentially toxic chemicals in tissues were relatively low when compared to the concentrations in tissues of other marine mammals feeding at higher trophic levels. These chemical contaminant data for the subsistence gray whales substantially increase the information available for presumably healthy animals.
Resumo:
The nocturnal, terrestrial frog Eleutherodactylus coqui, known as the Coqui, is endemic to Puerto Rico and was accidentally introduced to Hawai‘i via nursery plants in the late 1980s. Over the past two decades E. coqui has spread to the four main Hawaiian Islands, and a major campaign was launched to eliminate and control it. One of the primary reasons this frog has received attention is its loud mating call (85–90 dB at 0.5 m). Many homeowners do not want the frogs on their property, and their presence has influenced housing prices. In addition, E. coqui has indirectly impacted the floriculture industry because customers are reticent to purchase products potentially infested with frogs. Eleutherodactylus coqui attains extremely high densities in Hawai‘i, up to 91,000 frogs ha-1, and can reproduce year-round, once every 1–2 months, and become reproductive around 8–9 months. Although the Coqui has been hypothesized to potentially compete with native insectivores, the most obvious potential ecological impact of the invasion is predation on invertebrate populations and disruption of associated ecosystem processes. Multiple forms of control have been attempted in Hawai‘i with varying success. The most successful control available at this time is citric acid. Currently, the frog is established throughout the island of Hawai‘i but may soon be eliminated on the other Hawaiian Islands via control efforts. Eradication is deemed no longer possible on the island of Hawai‘i.
Resumo:
The Brown Tree Snake (Boiga irregularis) has caused ecological and economic damage to Guam, and the snake has the potential to colonize other islands in the Pacific Ocean. This study quantifies the potential economic damage if the snake were translocated, established in the state of Hawaii, and causing damage at levels similar to those on Guam. Damages modeled included costs of medical treatments due to snakebites, snake-caused power outages, and decreased tourism resulting from effects of the snake. Damage caused by presence of the Brown Tree Snake on Guam was used as a guide to estimate potential economic damage to Hawaii from both medical- and power outage–related damage. To predict tourism impact, a survey was administered to Hawaiian tourists that identified tourist responses to potential effects of the Brown Tree Snake. These results were then used in an input-output model to predict damage to the state economy. Summing these damages resulted in an estimated total potential annual damage to Hawaii of between $593 million and $2.14 billion. This economic analysis provides a range of potential damages that policy makers can use in evaluation of future prevention and control programs.