2 resultados para RIGIDITY

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the area of nanotechnology continues to grow, the development of new nanomaterials with interesting physical and electronic properties and improved characterization techniques are several areas of research that will be remain vital for continued improvement of devices and the understanding in nanoscale phenomenon. In this dissertation, the chemical vapor deposition synthesis of rare earth (RE) compounds is described in detail. In general, the procedure involves the vaporization of a REClx (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho) in the presence of hydride phase precursors such as decaborane and ammonia at high temperatures and low pressures. The vapor-liquid-solid mechanism was used in combination with the chemical vapor deposition process to synthesize single crystalline rare earth hexaboride nanostructures. The crystallographic orientation of as-synthesized rare earth hexaboride nanostructures and gadolinium nitride thin films was controlled by judicious choice of specific growth substrates and modeled by analyzing x-ray diffraction powder patterns and crystallographic models. The rare earth hexaboride nanostructures were then implemented into two existing technologies to enhance their characterization capabilities. First, the rare earth hexaboride nanowires were used as a test material for the development of a TEM based local electrode atom probe tomography (LEAP) technique. This technique provided some of the first quantitative compositional information of the rare earth hexaboride systems. Second, due to the rigidity and excellent conductivity of the rare earth hexaborides, nanostructures were grown onto tungsten wires for the development of robust, oxidation resistant nanomanipulator electronic probes for semiconductor device failure analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This course was an overview of what are known as the “Homological Conjectures,” in particular, the Zero Divisor Conjecture, the Rigidity Conjecture, the Intersection Conjectures, Bass’ Conjecture, the Superheight Conjecture, the Direct Summand Conjecture, the Monomial Conjecture, the Syzygy Conjecture, and the big and small Cohen Macaulay Conjectures. Many of these are shown to imply others. This document contains notes for a course taught by Tom Marley during the 2009 spring semester at the University of Nebraska-Lincoln. The notes loosely follow the treatment given in Chapters 8 and 9 of Cohen-Macaulay Rings, by W. Bruns and J. Herzog, although many other sources, including articles and monographs by Peskine, Szpiro, Hochster, Huneke, Grith, Evans, Lyubeznik, and Roberts (to name a few), were used. Special thanks to Laura Lynch for putting these notes into LaTeX.