1 resultado para REPRODUCING KERNEL HILBERT SPACES
em DigitalCommons@University of Nebraska - Lincoln
Filtro por publicador
- JISC Information Environment Repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (6)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (17)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (9)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (25)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (22)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (22)
- Boston University Digital Common (2)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (7)
- Bulgarian Digital Mathematics Library at IMI-BAS (13)
- CaltechTHESIS (8)
- Cambridge University Engineering Department Publications Database (48)
- CentAUR: Central Archive University of Reading - UK (93)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (7)
- Cochin University of Science & Technology (CUSAT), India (11)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Archives@Colby (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (13)
- Indian Institute of Science - Bangalore - Índia (69)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (5)
- Ministerio de Cultura, Spain (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (151)
- Queensland University of Technology - ePrints Archive (150)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (6)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (55)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (2)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (8)
- University of Queensland eSpace - Australia (2)
- University of Southampton, United Kingdom (2)
- University of Washington (1)
- WestminsterResearch - UK (9)
Resumo:
The multiple-instance learning (MIL) model has been successful in areas such as drug discovery and content-based image-retrieval. Recently, this model was generalized and a corresponding kernel was introduced to learn generalized MIL concepts with a support vector machine. While this kernel enjoyed empirical success, it has limitations in its representation. We extend this kernel by enriching its representation and empirically evaluate our new kernel on data from content-based image retrieval, biological sequence analysis, and drug discovery. We found that our new kernel generalized noticeably better than the old one in content-based image retrieval and biological sequence analysis and was slightly better or even with the old kernel in the other applications, showing that an SVM using this kernel does not overfit despite its richer representation.