4 resultados para REGRESSION TREES

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This register lists the largest trees of over 80 species identified in Nebraska. The name of the owner and nominator, size and location of each tree follow each listing. Many people across Nebraska have worked hard to make this register as comprehensive and accurate as possible, but the quest to find the largest trees in Nebraska is never over. Champion trees are by nature old, and old trees diminish and die. Larger trees are newly discovered. Thus, this list continually changes as new nominations are submitted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This extension circular shows and describes broadleaf trees that will grow in Nebraska. It should prove valuable when selecting a tree best suited for a specific area and purpose. Most of this publication is devoted to detailed descriptions of tree species. In addition, the main points of tree placement, tree planting and tree care are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Where the creation, understanding, and assessment of software testing and regression testing techniques are concerned, controlled experimentation is an indispensable research methodology. Obtaining the infrastructure necessary to support such experimentation, however, is difficult and expensive. As a result, progress in experimentation with testing techniques has been slow, and empirical data on the costs and effectiveness of techniques remains relatively scarce. To help address this problem, we have been designing and constructing infrastructure to support controlled experimentation with testing and regression testing techniques. This paper reports on the challenges faced by researchers experimenting with testing techniques, including those that inform the design of our infrastructure. The paper then describes the infrastructure that we are creating in response to these challenges, and that we are now making available to other researchers, and discusses the impact that this infrastructure has and can be expected to have.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regression coefficients specify the partial effect of a regressor on the dependent variable. Sometimes the bivariate or limited multivariate relationship of that regressor variable with the dependent variable is known from population-level data. We show here that such population- level data can be used to reduce variance and bias about estimates of those regression coefficients from sample survey data. The method of constrained MLE is used to achieve these improvements. Its statistical properties are first described. The method constrains the weighted sum of all the covariate-specific associations (partial effects) of the regressors on the dependent variable to equal the overall association of one or more regressors, where the latter is known exactly from the population data. We refer to those regressors whose bivariate or limited multivariate relationships with the dependent variable are constrained by population data as being ‘‘directly constrained.’’ Our study investigates the improvements in the estimation of directly constrained variables as well as the improvements in the estimation of other regressor variables that may be correlated with the directly constrained variables, and thus ‘‘indirectly constrained’’ by the population data. The example application is to the marital fertility of black versus white women. The difference between white and black women’s rates of marital fertility, available from population-level data, gives the overall association of race with fertility. We show that the constrained MLE technique both provides a far more powerful statistical test of the partial effect of being black and purges the test of a bias that would otherwise distort the estimated magnitude of this effect. We find only trivial reductions, however, in the standard errors of the parameters for indirectly constrained regressors.