2 resultados para Qualitative spatial reasoning

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study tested a dynamic field theory (DFT) of spatial working memory and an associated spatial precision hypothesis (SPH). Between 3 and 6 years of age, there is a qualitative shift in how children use reference axes to remember locations: 3-year-olds’ spatial recall responses are biased toward reference axes after short memory delays, whereas 6-year-olds’ responses are biased away from reference axes. According to the DFT and the SPH, quantitative improvements over development in the precision of excitatory and inhibitory working memory processes lead to this qualitative shift. Simulations of the DFT in Experiment 1 predict that improvements in precision should cause the spatial range of targets attracted toward a reference axis to narrow gradually over development, with repulsion emerging and gradually increasing until responses to most targets show biases away from the axis. Results from Experiment 2 with 3- to 5-year-olds support these predictions. Simulations of the DFT in Experiment 3 quantitatively fit the empirical results and offer insights into the neural processes underlying this developmental change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within cognitive neuroscience, computational models are designed to provide insights into the organization of behavior while adhering to neural principles. These models should provide sufficient specificity to generate novel predictions while maintaining the generality needed to capture behavior across tasks and/or time scales. This paper presents one such model, the Dynamic Field Theory (DFT) of spatial cognition, showing new simulations that provide a demonstration proof that the theory generalizes across developmental changes in performance in four tasks—the Piagetian A-not-B task, a sandbox version of the A-not-B task, a canonical spatial recall task, and a position discrimination task. Model simulations demonstrate that the DFT can accomplish both specificity—generating novel, testable predictions—and generality—spanning multiple tasks across development with a relatively simple developmental hypothesis. Critically, the DFT achieves generality across tasks and time scales with no modification to its basic structure and with a strong commitment to neural principles. The only change necessary to capture development in the model was an increase in the precision of the tuning of receptive fields as well as an increase in the precision of local excitatory interactions among neurons in the model. These small quantitative changes were sufficient to move the model through a set of quantitative and qualitative behavioral changes that span the age range from 8 months to 6 years and into adulthood. We conclude by considering how the DFT is positioned in the literature, the challenges on the horizon for our framework, and how a dynamic field approach can yield new insights into development from a computational cognitive neuroscience perspective.