3 resultados para Pupil tracking
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Collectively, the observations indicate that the overall warming of the Arctic system continued in 2007. There are some elements that are stabilizing or returning to climatological norms. These mixed tendencies illustrate the sensitivity and complexity of the Arctic System. Atmosphere: Hot spot shifts toward Europe Ocean: North Pole Temperatures at depth returning to 1990s values Sea Ice: Summer extent at record minimum Greenland: Recent warm temperatures associated with net ice loss Biology: increasing tundra shrub cover and variable treeline advance; up to 80% declines in some caribou herds while goose populations double Land: Increase in permafrost temperatures The Arctic Report Card 2007 is introduced as a means of presenting clear, reliable and concise information on recent observations of environmental conditions in the Arctic, relative to historical time series records. It provides a method of updating and expanding the content of the State of the Arctic Report, published in fall 2006, to reflect current conditions. Material presented in the Report Card is prepared by an international team of scientists and is peer-reviewed by topical experts nominated by the US Polar Research Board. The audience for the Arctic Report Card is wide, including scientists, students, teachers, decision makers and the general public interested in Arctic environment and science. The web-based format will facilitate future timely updates of the content.
Resumo:
The U.S. Geological Survey (USGS) is committed to providing the Nation with credible scientific information that helps to enhance and protect the overall quality of life and that facilitates effective management of water, biological, energy, and mineral resources (http://www.usgs.gov/). Information on the Nation’s water resources is critical to ensuring long-term availability of water that is safe for drinking and recreation and is suitable for industry, irrigation, and fish and wildlife. Population growth and increasing demands for water make the availability of that water, now measured in terms of quantity and quality, even more essential to the long-term sustainability of our communities and ecosystems. The USGS implemented the National Water-Quality Assessment (NAWQA) Program in 1991 to support national, regional, State, and local information needs and decisions related to water-quality management and policy (http://water.usgs.gov/nawqa). The NAWQA Program is designed to answer: What is the condition of our Nation’s streams and ground water? How are conditions changing over time? How do natural features and human activities affect the quality of streams and ground water, and where are those effects most pronounced? By combining information on water chemistry, physical characteristics, stream habitat, and aquatic life, the NAWQA Program aims to provide science-based insights for current and emerging water issues and priorities. From 1991-2001, the NAWQA Program completed interdisciplinary assessments and established a baseline understanding of water-quality conditions in 51 of the Nation’s river basins and aquifers, referred to as Study Units (http://water.usgs.gov/nawqa/studyu.html).
Resumo:
The integration of CMOS cameras with embedded processors and wireless communication devices has enabled the development of distributed wireless vision systems. Wireless Vision Sensor Networks (WVSNs), which consist of wirelessly connected embedded systems with vision and sensing capabilities, provide wide variety of application areas that have not been possible to realize with the wall-powered vision systems with wired links or scalar-data based wireless sensor networks. In this paper, the design of a middleware for a wireless vision sensor node is presented for the realization of WVSNs. The implemented wireless vision sensor node is tested through a simple vision application to study and analyze its capabilities, and determine the challenges in distributed vision applications through a wireless network of low-power embedded devices. The results of this paper highlight the practical concerns for the development of efficient image processing and communication solutions for WVSNs and emphasize the need for cross-layer solutions that unify these two so-far-independent research areas.