2 resultados para Pringle, Heather
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Heligmosomoides johnsoni sp. noy. is described from the cecum of the heather vole, Phenacomys intermedius Merriam, from the Olympic Mountains, Washington. The absence of longitudinal cuticular ridges dorsally separates H. johnsoni from species of Heligmosomoides other than H. hudsoni (Cameron, 1937), which occurs in varying lemmings, Dicrostonyx spp., and from which H. johnsoni is distinguished by its longer spicules, form of the dorsal ray, and other characters. Both Phenacomys and Dicrostonyx have a specialized cecum, with long villi around which the nematodes are found tightly coiled. The zoogeography of heligmosomid nematodes in Phenacomys is briefly discussed. French abstract: On décrit Heligmosomoides johnsoni sp. nov. parasite du caecum du rongeur néarctique, Phenacomys intermedius Merriam, des Montagnes Olympiques de Washington. L'absence de crêtes cuticulaires sur la face dorsaIe sépare H. johnsoni des autres Heligmosomoides à I'exception d'H. hudsoni (Cameron, 1937) qui se trouve chez Dicrostonyx spp., et duquel H. johnsoni se distingue par ses spicules plus longs, par la forme différente de la côte dorsale et par d'autres caractères. Phenacomys et Dicrostonyx ont un caecum spécialisé, muni de villosités allongées, autour desquelles les nématodes s'enroulent étroitement. La zoogéographie des nematodes héligmosomes chez Phenacomys est discutée.
Resumo:
Alpine glaciers have receded substantially over the last century in many regions of the world. Resulting changes in glacial runoff not only affect the hydrological cycle, but can also alter the physical (i.e., turbidity from glacial flour) and biogeochemical properties of downstream ecosystems. Here we compare nutrient concentrations, transparency gradients, algal biomass, and fossil diatom species richness in two sets of high-elevation lakes: those fed by snowpack melt alone (SF lakes) and those fed by both glacial and snowpack meltwaters (GSF lakes). We found that nitrate (NO3-) concentrations in the GSF lakes were 1-2 orders of magnitude higher than in SF lakes. Although nitrogen (N) limitation is common in alpine lakes, algal biomass was lower in highly N-enriched GSF lakes than in the N-poor SF lakes. Contrary to expectations, GSF lakes were more transparent than SF lakes to ultraviolet and equally transparent to photosynthetically active radiation.Sediment diatom assemblages had lower taxonomic richness in the GSF lakes, a feature that has persisted over the last century. Our results demonstrate that the presence of glaciers on alpine watersheds more strongly influences NO3- concentrations in high-elevation lake ecosystems than any other geomorphic or biogeographic characteristic.