4 resultados para Predator-prey models

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The northern biotype of Echinococcus granulosus occurs throughout the holarctic zones of tundra and taiga, from eastern Fennoscandia to the Bering Strait in Eurasia and in North America from arctic Alaska approximately to the northern border of the United States. The cycle of the cestode is complex in taiga at lower latitudes, because of the greater diversity of potential hosts. In the Arctic and Subarctic, however, four patterns of predator/prey relationships may be discerned. Two natural cycles involve the wolf and wild reindeer and the wolf and elk (moose), respectively. Where deer of the two species coexist, both are prey of the wolf; the interactions of the wolf and elk are here described on the basis of long-term observations made on Isle Royale (in Lake Superior near the southern limit of taiga), where only the wolf and elk serve as hosts for E. granulosus. A synanthropic cycle involving herding-dogs and domesticated reindeer caused hyperendemicity of cystic echinococcosis in arctic Eurasia, mainly in northeastern Siberia. The 4th pattern, a semi-synanthropic cycle, formerly existed in Alaska, wherein sled-dogs of the indigenous hunters became infected by consuming the lungs of wild reindeer. The sequence of changes in life-style inherent in the process of acculturation affected the occurrence of cystic echinococcosis among nomadic Iñupiat in arctic Alaska. When those people became sedentary, the environs of their early villages soon became severely contaminated by feces of dogs, and cases of cystic echinococcosis occurred. Compared to cystic echinococcosis caused by E. granulosus adapted to synanthropic hosts (dog and domestic ungulates), the infection produced by the northern biotype is relatively benign. 0fearly all diagnosed cases of cystic echinococcosis (> 300 in Alaska have occurred in indigenous people; only one fatality has been recorded (in a non-indigenous person). After sled-dogs were replaced by machines, cases have become rare in Alaska. A similar effect has been observed in Fennoscandia, in the Saami and domesticated reindeer. Recent records indicate tbat the prcvalence of cystic echinococcosis is increasing in Russia, suggesting that dogs are used there in herding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As you can see from the general tenor of the printed program for this seminar, I am in the unenviable position of trying to discourage you from certain types of chemical control; but my assigned topic "Side Effects of Persistent Toxicants," implies that mission. However, my remarks may be somewhat anticlimax at this time, because it is now generally conceded that we need to reevaluate certain chemicals in control work and to restrict or severely curtail use of those that per¬sist for long periods in the environment. So let me detail my reasons for a somewhat negative attitude toward the use of the persistent hydrocarbons from my experience with the effects of these materials on birds. But first a few words of caution about control work in general, which so often disrupts natural processes and leads to new and unforseen difficulties. As an example, I think of the irruption of mice in the Klamath valley in northern California and southern Oregon in the late '50's. Intensive predator control, particularly of coyotes, but also of hawks and owls, was followed by a severe outbreak of mice in the spring of 1958. To combat the plague of mice, poisoned bait (1080 and zinc phosphide) was widely distributed in an area used by 500,000 waterfowl each spring. More than 3,000 geese were poisoned, so driv¬ing parties were organized to keep the geese off the treated fields. Here it seems conceivable that the whole chain of costly events--cost of the original and probably unnecessary predator control, economic loss to crops from the mouse outbreak, another poisoning campaign to combat the mice, loss of valuable waterfowl resources, and man-hours involved in flushing geese from the fields--might have been averted by a policy of not interfering with the original predator-prey relationship. This points to a dilemma we always face. (We create deplorable situations by clumsy interference with natural processes, then seek artificial cures to correct our mistakes.) For example, we spend millions of dollars in seeking cures for cancer, but do little or nothing about restricting the use of known or suspected carcinogens such as nicotine and DDT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Central-place foragers that must return to a breeding site to deliver food to offspring are faced with trade-offs between prey patch quality and distance from the colony. Among colonial animals, pinnipeds and seabirds may have different provisioning strategies, due to differences in their ability to travel and store energy. We compared the foraging areas of lactating Antarctic fur seals and chinstrap penguins breeding at Seal Island, Antarctica, to investigate whether they responded differently to the distribution of their prey (Antarctic krill and myctophid fish) and spatial heterogeneity in their habitat. Dense krill concentrations occurred in the shelf region near the colony. However, only brooding penguins, which are expected to be time-minimizers because they must return frequently with whole food for their chicks, foraged mainly in this proximal shelf region. Lactating fur seals and incubating penguins, which can make longer trips to increase energy gain per trip, and so are expected to be energy-maximizers, foraged in the more distant (>20 km from the island) slope and oceanic regions. The shelf region was characterized by more abundant, but lower-energy-content immature krill, whereas the slope and oceanic regions had less abundant but higher-energy-content gravid krill, as well as high-energy-content myctophids. Furthermore, krill in the shelf region undertook diurnal vertical migration, whereas those in the slope and oceanic regions stayed near the surface throughout the day, which may enhance the capture rate for visual predators. Therefore, we sug- gest that the energy-maximizers foraged in distant, but potentially more profitable feeding regions, while the time-minimizers foraged in closer, but potentially less profitable regions. Thus, time and energy constraints derived from different provisioning strategies may result in sympatric colonial predator species using different foraging areas, and as a result, some central-place foragers use sub- optimal foraging habitats, in terms of the quality or quantity of available prey.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antarctic fur seals (Arctocephalus gazella) in the South Shetland Islands are recovering from 19th-century exploitation more slowly than the main population at South Georgia. To document demographic changes associated with the recovery in the South Shetlands, we monitored fur seal abundance and reproduction in the vicinity of Elephant Island during austral summers from 1986/1987 through 1994/1995. Total births, mean and variance of birth dates, and average daily mortality rates were estimated from daily live pup counts at North Cove (NC) and North Annex (NA) colonies on Seal Island. Sightings of leopard seals (Hydrurga leptonyx) and incidents of leopard seal predation on fur seal pups were recorded opportunistically during daily fur seal research at both sites. High mortality of fur seal pups, attributed to predation by leopard seals frequently observed at NC, caused pup numbers to decline rapidly between January and March (i.e., prior to weaning) each year and probably caused a long-term decline in the size of that colony. The NA colony, where leopard seals were never observed, increased in size during the study. Pup mortality from causes other than leopard seal predation appeared to be similar at the two sites. The number of pups counted at four locations in the Elephant Island vicinity increased slowly, at an annual rate of 3.8%, compared to rates as high as 11% at other locations in the South Shetland Islands. Several lines of circumstantial evidence are consistent with the hypothesis that leopard seal predators limit the growth of the fur seal population in the Elephant Island area and perhaps in the broader population in the South Shetland Islands. The sustained growth of this fur seal population over many decades rules out certain predator–prey models, allowing inference about the interaction between leopard seals and fur seals even though it is less thoroughly studied than predator–prey systems of terrestrial vertebrates of the northern hemisphere. Top-down forces should be included in hypotheses for future research on the factors shaping the recovery of the fur seal population in the South Shetland Islands.