4 resultados para Porteous, G. Thomas, Jr., 1946-
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Stomach contents were analyzed from 127 Baird’s beaked whales, Berardizls bairdii, taken in coastal waters of Japan. During late July-August of 1985- 1987, 1989, and 1991, 107 samples were collected from off the Pacific coast of Honshu. An additional 20 samples were collected from whales taken in the southern Sea of Okhotsk during late August-September of 1988 and 1989. Prey identification using fish otoliths and cephalopod beaks revealed the whales fed primarily on deep-water gadiform fishes and cephalopods in both regions. Prey species diversity and the percentage of cephalopods and fish differed between the two regions. Off the Pacific coast of Honshu the whales fed primarily on benthopelagic fishes (81.8%) and only 18.0% on cephalopods. Eight species of fish representing two families, the codlings (Moridae) and the grenadiers (Macrouridde), collectively made up 81.3% of the total. Thirty species of cephalopods representing 14 families made up 12.7%. In the southern Sea of Okhotsk, cephalopods accounted for 87.1% of stomach contents. The families Gonatidae and Cranchiidae were the predominant cephalopod prey, accounting for 86.7% of the diet. Gadiform fish accounted for only 12.9% of the diet. Longfin codling, Laernonma longipes, was the dominant fish prey in both regions. Depth distribution of the two commonly consumed fish off the Pacific coast of Honshu indicate the whales in this region fed primarily at depths ranging from 800 to 1,200 m.
Resumo:
The world's river dolphins (Inia, Pontoporia, Lipotes and Platanista) are among the least known and most endangered of all cetaceans. The four extant genera inhabit geographically disjunct river systems and exhibit highly modified morphologies, leading many cetologists to regard river dolphins as an unnatural group. Numerous arrangements have been proposed for their phylogenetic relationships to one another and to other odontocete cetaceans. These alternative views strongly affect the biogeographical and evolu- tionary implications raised by the important, although limited, fossil record of river dolphins. We present a hypothesis of river dolphin relationships based on phylogenetic analysis of three mitochondrial genes for 29 cetacean species, concluding that the four genera represent three separate, ancient branches in odontocete evolution. Our molecular phylogeny corresponds well with the first fossil appearances of the primary lineages of modern odontocetes. Integrating relevant events in Tertiary palaeoceanography, we develop a scenario for river dolphin evolution during the globally high sea levels of the Middle Miocene. We suggest that ancestors of the four extant river dolphin lineages colonized the shallow epicontinental seas that inundated the Amazon, Parana, Yangtze and Indo-Gangetic river basins, subsequently remaining in these extensive waterways during their transition to freshwater with the Late Neogene trend of sea-level lowering.
Resumo:
We reviewed the subspecies listed by Rice (1998) and those described since (a total of 49, in 19 species), assessing them against the criteria recommended by the recent Workshop on Shortcomings of Cetacean Taxonomy in Relation to Needs of Conservation and Management (Reeves et al., 2004). The workshop suggested that the subspecies concept can be construed to cover two types of entities: a) lineages diverging but not quite far along the continuum of divergence (still having significant gene flow with another lineage or lineages) to be judged as species, and b) lineages that may well be species but for which not enough evidence is yet available to justify their designation as such. As a criterion for support of a subspecies, the workshop suggested as a guideline that there be at least one good line of either morphological or appropriate genetic evidence. "Appropriate" was not defined; the recommendation was that that be left up to the taxonomist authors of subspecies and to their professional peers. A further recommendation was that evidence on distribution, behavior and ecology should be considered not as primary but as supporting evidence, as there was not agreement at the workshop that such characters are necessarily stable (in the case of distribution) or inherent (behavior and ecology).
Resumo:
Wetland ecology is a relatively new field that developed from an initial interest in a few direct benefits that wetlands provide to society. Consequently, much early scientific work was stimulated by economic returns from specific wetland services, such as production of peat and provision of habitat for economically valuable wildlife (e.g., waterfowl and furbearers). Over time, societal interest in wetlands broadened, and these unique habitats are now valued for many additional services, including some that bear non market value. Common examples include carbon sequestration, flood reduction, water purification, and aesthetics. The increased recognition of the importance of wetlands has generated a diversity of job opportunities in wetland ecology and management. Despite the increased knowledge base and enhanced job market, I am not aware of any institutions that offer specialty degrees in this new discipline. Indeed, relatively few institutions offer specific wetland ecology classes, with Arnold G. van der Valk and a few of his peers at other universities being notable exceptions.