9 resultados para Plicatura nasal

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective—To determine the distribution of lesions and extent of tissues infected with Mycobacterium bovis in a captive population of white-tailed deer. Design—Cross-sectional study. Animals—116 captive white-tailed deer. Procedure—Deer were euthanatized, and postmortem examinations were performed. Tissues with gross lesions suggestive of tuberculosis were collected for microscopic analysis and bacteriologic culture. Tissues from the head, thorax, and abdomen of deer with no gross lesions were pooled for bacteriologic culture. Tonsillar, nasal, oral, and rectal swab specimens, fecal samples, and samples of hay and pelleted feed, soil around feeding sites, and water from 2 natural ponds were collected for bacteriologic culture. Results—Mycobacterium bovis was isolated from 14 of 116 (12%) deer; however, only 9 of 14 had lesions consistent with tuberculosis. Most commonly affected tissues included the medial retropharyngeal lymph node and lung. Five of 14 tuberculous deer had no gross lesions; however,M bovis was isolated from pooled tissue specimens from the heads of each of these deer. Bacteriologic culture of tonsillar swab specimens from 2 of the infected deer yielded M bovis. Mean (± SEM) age of tuberculous deer was 2.5 ± 0.3 years (range, 0.5 to 6 years). Mycobacterium bovis was not isolated from feed, soil, water, or fecal samples. Conclusions and Clinical Relevance—Examination of hunter-killed white-tailed deer for tuberculosis commonly includes only the lymph nodes of the head. Results of such examinations may underestimate disease prevalence by as much as 57%. Such discrepancy should be considered when estimating disease prevalence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to develop a suitable experimental model of natural Mycobacterium bovis infection in white-tailed deer (Odocoileus virginianus), describe the distribution and character of tuberculous lesions, and to examine possible routes of disease transmission. In October 1997, 10 mature female white-tailed deer were inoculated by intratonsilar instillation of 2 3 103 (low dose) or 2 3 105 (high dose) colony forming units (CFU) of M. bovis. In January 1998, deer were euthanatized, examined, and tissues were collected 84 to 87 days post inoculation. Possible routes of disease transmission were evaluated by culture of nasal, oral, tonsilar, and rectal swabs at various times during the study. Gross and microscopic lesions consistent with tuberculosis were most commonly seen in medial retropharyngeal lymph nodes and lung in both dosage groups. Other tissues containing tuberculous lesions included tonsil, trachea, liver, and kidney as well as lateral retropharyngeal, mandibular, parotid, tracheobronchial, mediastinal, hepatic, mesenteric, superficial cervical, and iliac lymph nodes. Mycobacterium bovis was isolated from tonsilar swabs from 8 of 9 deer from both dosage groups at least once 14 to 87 days after inoculation. Mycobacterium bovis was isolated from oral swabs 63 and 80 days after inoculation from one of three deer in the low dose group and none of four deer in the high dose group. Similarly, M. bovis was isolated from nasal swabs 80 and 85 days after inoculation in one of three deer from the low dose group and 63 and 80 days after inoculation from two of four deer in the high dose group. Intratonsilar inoculation with M. bovis results in lesions similar to those seen in naturally infected white-tailed deer; therefore, it represents a suitable model of natural infection. These results also indicate that M. bovis persists in tonsilar crypts for prolonged periods and can be shed in saliva and nasal secretions. These infected fluids represent a likely route of disease transmission to other animals or humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tuberculosis due to Mycobacterium bovis infection is endemic in white-tailed deer (Odocoileus virginianus) in the northeastern portion of the lower Michigan peninsula (USA). Various wild carnivores and omnivores, including raccoons (Procyon lotor), are infected with M. bovis within the endemic area. To investigate the pathogenesis of tuberculosis in raccoons and the likelihood of M. bovis transmission from infected raccoons to other susceptible hosts, we experimentally inoculated raccoons with single oral doses of M. bovis (ranging from 30 to 1.7 x 105 colony forming units [CFU]), five daily oral doses of M. bovis (ranging from 10 to 1 x 105 CFU), or a single intravenous (IV) dose of 1 x 105 CFU of M. bovis, from November 1998 through December 2000. Granulomatous lesions consistent with tuberculosis, or tissue colonization with M. bovis, were seen in one of five raccoons in the single low oral dose group, one of five raccoons in the multiple low oral dose group, two of five raccoons in the multiple medium oral dose group, five of five raccoons in the multiple high oral dose group, and five of five raccoons in the IV inoculated group. In orally inoculated raccoons, lesions were most common in the tracheobronchial and mesenteric lymph nodes and lung. Excretion of M. bovis in saliva or nasal secretions was noted in all IV inoculated raccoons and two of five multiple low oral dose raccoons. Mycobacterium bovis was not isolated from urine or feces from any experimentally inoculated raccoons. The need for multiple large oral doses to establish infection, and the low number of orally inoculated raccoons that excreted M. bovis in nasal secretions or saliva, suggest that widespread tuberculosis among raccoons is unlikely.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective—To determine whether Mycobacterium bovis can be transmitted from experimentally infected deer to uninfected in-contact deer. Animals—Twenty-three 6-month-old white-tailed deer. Procedure—On day 0, M bovis (2 X 108 colony-forming units) was administered by intratonsillar instillation to 8 deer; 3 control deer received saline (0.9% NaCl) solution. Eight in-contact deer were comingled with inoculated deer from day 21. On day 120, inoculated deer were euthanatized and necropsied. On day 180, 4 in-contact deer were euthanatized, and 4 new incontact deer were introduced. On day 360, all in-contact deer were euthanatized. Rectal, oral, and nasal swab specimens and samples of hay, pelleted feed, water, and feces were collected for bacteriologic culture. Tissue specimens were also collected at necropsy for bacteriologic culture and histologic analysis. Results—On day 90, inoculated and in-contact deer developed delayed-type hypersensitivity (DTH) reactions to purified protein derivative of M bovis. Similarly, new in-contact deer developed DTH reactions by 100 days of contact with original in-contact deer. Tuberculous lesions in in-contact deer were most commonly detected in lungs and tracheobronchial and medial retropharyngeal lymph nodes. Mycobacterium bovis was isolated from nasal secretions and saliva from inoculated and in-contact deer, urine and feces from in-contact deer, and hay and pelleted feed. Conclusions and Clinical Relevance—Mycobacterium bovis is efficiently transmitted from experimentally infected deer to uninfected in-contact deer through nasal secretions, saliva, or contaminated feed. Wildlife management practices that result in unnatural gatherings of deer may enhance both direct and indirect transmission of M bovis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Univariate and multivariate analyses of 20 skull characters of 304 adult sea otters from throughout the geographic range strongly suggest that three subspecies should be recognized. The nominate form, Enhydra lutris lutris, occurs from the Kuril Islands north to the Commander Islands in the western Pacific Ocean. Individuals of E. l. lutris are characterized by large size and wide skulls with short nasal bones. E. 1. nereis is found along the California coast and off San Nicolas Island, where the species recently has been reintroduced from coastal California. Specimens of E. 1. nereis have narrow skulls with a long rostrum and small teeth, and usually lack the characteristic notch in the postorbital region found in most specimens of the other two subspecies. A new subspecies described by Don E. Wilson in this report, occurs throughout the Aleutian Islands and southward in the eastern Pacific to Washington. Specimens of the new subspecies are intermediate in size in most, but not all, characters and have longer mandibles than either of the other two subspecies

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EQUINE influenza A virus (EIV) is a highly infectious respiratory pathogen of horses (Hannant and Mumford 1996, Palese and Shaw 2007). The illness is characterized by an abrupt onset of fever, depression, coughing and nasal discharge, and is often complicated by secondary bacterial infections that can lead to pneumonia and death. Two subtypes of EIV, H3N8 and H7N7, have been isolated. The H7N7 subtype was first isolated from a horse in Czechoslovakia in 1956 (Prague/56), and the H3N8 subtype was first isolated from a horse in Miami in 1963 (Sovinova and others 1958, Waddell and others 1963). The last confirmed outbreak of H7N7 occurred in 1979, and this subtype is now considered to be either extinct or circulating at low levels in a few geographical areas (Ismail and others 1990, Webster 1993, Singh 1994, Madic and others 1996, van Maanen and Cullinane 2002). The H3N8 subtype is a common cause of disease in horses worldwide, particularly in areas where vaccination is not routinely performed (Paillot and others 2006).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several wildlife species have tested positive for bovine tuberculosis in Michigan and may potentially transmit the disease to other animals. Coyotes have the highest known prevalence in the endemic area and thus, our objective was to investigate the shedding of Mycobacterium bovis by coyotes. Four coyotes were orally inoculated with 1 ml of 1 x 105 CFU/ml of M. bovis. Oral and nasal swabs, and feces were collected regularly and tested by culture. Fecal samples were also tested by exposing guinea pigs to the coyotes' feces. All animals were necropsied to determine if infection occurred. All swabs, feces and tissues were negative on culture. The dosage of M. bovis given to these coyotes was considered biologically relevant, but was insufficient for causing infection. Due to the lack of infection, we still do not know the risk coyotes pose for shedding M. bovis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INFLUENZA A virus (IAV) (family Orthomyxoviridae) is a highly infectious respiratory pathogen of birds and mammals, including human beings and horses (Palese and Shaw 2007). The virus is classified into different subtypes based on the antigenic properties of the haemagglutinin (HA) and neuraminidase (NA) proteins. Sixteen HA subtypes (H1 to H16) and nine NA subtypes (N1 to N9) have been identified (Fouchier and others 2005). Two subtypes, H3N8 and H7N7, have been isolated from horses. The H7N7 subtype was first isolated from a horse in Czechoslovakia in 1956 (Prague/56) (Sovinova and others 1958), and the H3N8 subtype was first isolated from a horse in Miami, USA, in 1963 (Waddell and others 1963). The H7N7 subtype has not been isolated from horses for three decades and is presumed to be extinct (Webster 1993). The H3N8 subtype is currently a common cause of disease in horses worldwide. In horses, influenza is characterized by an abrupt onset of pyrexia, depression, coughing and nasal discharge, and is often complicated by secondary bacteria infections that can lead to pneumonia and death (Hannant and Mumford 1996). Although H3N8 is a major cause of morbidity in horses throughout the world, information on the seroprevalence of IAV in horses and other domestic animals in Mexico is limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Yellowstone National Park is located over a hot spot under the North American tectonic plate and holds a potentially explosive super-volcano that has the ability to cause deadly consequences on the North American continent. After an eruption the surrounding region would see the greatest devastation, covered by pyroclastic deposits and thick ash fall exterminating most all life and destroying all structures in its path. In landscapes of greater distance from the event the consequences will be less dramatic yet still substantial. Records of previous eruption data from the Yellowstone super-volcano show that the ash fall out from the eruption can cover areas as large as one million square kilometers and could leave Nebraska covered in ash up to 10 centimeters thick. This would cause destruction of agriculture, extensive damage to structures, decreased temperatures, and potential respiratory hazards. The effects of volcanic ash on the human respiratory system have been shown to cause acute symptoms from heavy exposure. Symptoms include nasal irritation, throat irritation, coughing, and if preexisting conditions are present some can develop bronchial symptoms, which can last for a few days. People with bronchitis and asthma are shown to experience airway irritation and uncomfortable breathing. In most occurrences, exposure of volcanic ash is too short to cause long-term health hazards. Wearing facial protection can alleviate much of the symptoms. Most of the long-term ramifications of the eruption will be from the atmospheric changes caused from disruption of solar radiation, which will affect much of the global population. The most pertinent concerns for Nebraska citizens are from the accumulation of ash deposits over the landscape and the climatic perturbations. Potential mitigation procedures are essential to prepare our essentially unaware population of the threat that they may soon face if the volcano continues on its eruption cycle.