4 resultados para Plants in winter

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. Blue whale locations in the Southern Hemisphere and northern Indian Ocean were obtained from catches (303 239), sightings (4383 records of ≥ 8058 whales), strandings (103), Discovery marks (2191) and recoveries (95), and acoustic recordings. 2. Sighting surveys included 7 480 450 km of effort plus 14 676 days with unmeasured effort. Groups usually consisted of solitary whales (65.2%) or pairs (24.6%); larger feeding aggregations of unassociated individuals were only rarely observed. Sighting rates (groups per 1000 km from many platform types) varied by four orders of magnitude and were lowest in the waters of Brazil, South Africa, the eastern tropical Pacific, Antarctica and South Georgia; higher in the Subantarctic and Peru; and highest around Indonesia, Sri Lanka, Chile, southern Australia and south of Madagascar. 3. Blue whales avoid the oligotrophic central gyres of the Indian, Pacific and Atlantic Oceans, but are more common where phytoplankton densities are high, and where there are dynamic oceanographic processes like upwelling and frontal meandering. 4. Compared with historical catches, the Antarctic (‘true’) subspecies is exceedingly rare and usually concentrated closer to the summer pack ice. In summer they are found throughout the Antarctic; in winter they migrate to southern Africa (although recent sightings there are rare) and to other northerly locations (based on acoustics), although some overwinter in the Antarctic. 5. Pygmy blue whales are found around the Indian Ocean and from southern Australia to New Zealand. At least four groupings are evident: northern Indian Ocean, from Madagascar to the Subantarctic, Indonesia to western and southern Australia, and from New Zealand northwards to the equator. Sighting rates are typically much higher than for Antarctic blue whales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

From October 1996 through September 1998, we used bottom-mounted hydrophone arrays to monitor deep-water areas north and west of the British Isles for songs of humpback whales (Megaptera novaeangliae). Singing humpbacks were consistently detected between October and March from the Shetland- Faroe Islands south to waters west of the English Channel. Temporal and geographic patterns of song detections, and movements of individually tracked whales, exhibited a southwesterly trend over this period, but with no corresponding northward trend between April and September. These results, together with a review of historical data from this area, suggest that the offshore waters of the British Isles represent a migration corridor for humpbacks, at least some of which summer in Norwegian (and possibly eastern Icelandic) waters. The migratory destination of the detected animals remains unknown, but the limited data suggest that these whales are bound primarily for the West Indies rather than historical breeding areas off the northwestern coast of Africa. Humpbacks detected in British waters after early to mid- March probably do not undertake a full migration to the tropics. These data provide further evidence that singing is not confined to tropical waters in winter, but occurs commonly on migration even in high latitudes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Water temperature and dissolved oxygen (DO) profiles were measured once every month from mid July to mid February in a relatively deep sand-pit lake in southeast Nebraska. These profiles showed depleted DO concentrations below the thermocline during summer stratification indicating areas fish will likely avoid in summer months. Colder temperatures in fall caused complete mixing of the water column allowing fish to inhabit all depths of the lake. An inverse temperature stratification occurred directly below the ice during winter months as ice cover cooled the surface water to below 4 degrees Celsius. Ice cover also blocked air – water oxygen transfer and reduced light for photosynthesizing algae. Associated with winter ice cover, DO concentrations in the hypolimnion decreased significantly, once again reducing available fish habitat. It is likely anglers will have a higher success rate catching fishing in water above 6 meters (m) (~20 feet) in a eutrophic sandpit lake during hot summer months and below ice cover in winter. Fish can utilize all depths of the lake during fall turnover and could theoretically be caught by anglers anywhere in the lake.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Responding to a U.S. Federal court order to improve discharged wastewater quality, Augusta, Georgia initiated development of artificial wetlands in 1997 to treat effluents. Because of the proximity to Augusta Regional Airport at Bush Field, the U.S. Federal Aviation Administration expressed concern for potential increased hazard to aircraft posed by birds attracted to these wetlands. We commenced weekly low-level aerial surveys of habitats in the area beginning January, 1998. Over a one-year period, 49 surveys identified approximately 42,000 birds representing 52 species, including protected Wood Storks and Bald Eagles, using wetlands within 8 km of the airport. More birds were observed during the mid-winter and fall/spring migratory seasons (1,048 birds/survey; October - April) than during the breeding/post-breeding seasons (394 birds/survey; May - September). In winter, waterfowl dominated the avian assemblage (65% of all birds). During summer, wading birds were most abundant (56% of all birds). Habitat changes within the artificial wetlands produced fish kills and exposed mudflats, resulting in increased use by wading birds and shorebirds. No aquatic birds were implicated in 1998 bird strikes, and most birds involved could safely be placed within songbird categories. Airport incident reports further implicated songbirds. These findings suggested that efforts to decrease numbers of songbirds on the airport property must be included in the development of a wildlife hazard management plan. Seasonal differences in site use among species groups should also be considered in any such plan. Other wetlands within 8 km of the airport supported as many or more birds than the artificial wetlands. With proper management of the artificial wetlands, it should be possible to successfully displace waterfowl and wading birds to other wetlands further from the airport.