3 resultados para Plant mapping
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Ravaged by Nature, page 3 Hurricanes Katrina and Rita left millions of dollars of damage in their wake. Focus on…Comprehensive Conservation Planning, pages 10-14 What does it take to draft a first-rate CCP? How does a refuge reach out and communicate with partners and community? Baby Switch in High Places, page 21 Refuge biologists in California successfully swap a fertile for an infertile egg and the condor parents are none the wiser. Invasive Plant Mapping, page 9 Volunteers using state-of-the-arttechnology are helping to map and control invasive plants.
Resumo:
Four of the 12 major Glycine max ancestors of all modern elite U.S.A. soybean cultivars were the grandparents of Harosoy and Clark, so a Harosoy x Clark population would include some of that genetic diversity. A mating of eight Harosoy and eight Clark plants generated eight F1 plants. The eight F1:2 families were advanced via a plant-to-row selfing method to produce 300 F6-derived RILs that were genotyped with 266 SSR, 481 SNP, and 4 classical markers. SNPs were genotyped with the Illumina 1536-SNP assay. Three linkage maps, SSR, SNP, and SSR-SNP, were constructed with a genotyping error of < 1 %. Each map was compared with the published soybean consensus map. The best subset of 94 RILs for a high-resolution framework (joint) map was selected based on the expected bin length statistic computed with MapPop. The QTLs of seven traits measured in a 2-year replicated performance trial of the 300 RILs were identified using composite interval mapping (CIM) and multiple-interval mapping (MIM). QTL x Year effects in multiple trait analysis were compared with results of multiple-interval mapping. QTL x QTL effects were identified in MIM.
Resumo:
Sweet sorghum, a botanical variety of sorghum is a potential source of bioenergy because high sugar levels accumulate in its stalks. The objectives of this study were to explore the global diversity of sweet sorghum germplasm, and map the genomic regions that are associated with bioenergy traits. In assessing diversity, 142 sweet sorghum accessions were evaluated with three marker types (SSR, SRAP, and morphological markers) to determine the degree of relatedness among the accessions. The traits measured (anthesis date [AD], plant height [PH], biomass yield [BY], and moisture content [MC]) were all significantly different (P<0.05) among accessions. Morphological marker clustered the accessions into five groups based on PH, MC and AD. The three traits accounted for 92.5% of the variation. There were four and five groups based on SRAP and SSR data respectively classifying accessions mainly on their origin or breeding history. The observed difference between SSR and SRAP based clusters could be attributed to the difference in marker type. SSRs amplify any region of the genome whereas SRAP amplify the open reading frames and promoter regions. Comparing the three marker-type clusters, the markers complimented each other in grouping accessions and would be valuable in assisting breeders to select appropriate lines for crossing. In evaluating QTLs that are associated with bioenergy traits, 165 recombinant inbred lines (RILs) were planted at four environments in Nebraska. A genetic linkage map constructed spanned a length of 1541.3 cM, and generated 18 linkage groups that aligned to the 10 sorghum chromosomes. Fourteen QTLs (6 for brix, 3 for BY, 2 each for AD and MC, and 1 for PH) were mapped. QTLs for the traits that were significantly correlated, colocalized in two clusters on linkage group Sbi01b. Both parents contributed beneficial alleles for most of traits measured, supporting the transgressive segregation in this population. Additional work is needed on exploiting the usefulness of chromosome 1 in breeding sorghum for bioenergy.