5 resultados para Plague.
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
At the first Vertebrate Pest Control Conference in 1964, I traced the history of plague control in California and outlined a revised approach, based on newer concepts of plague ecology. In our state of relative ignorance, this required a number of unproved assumptions about plague occurrence in California that verged on crystal ball gazing. These were principally that (1) plague persists in relatively resistant rodent species in certain favorable locations, (2) ground squirrels and chipmunks experience periodic epizootics, but are not permanent reservoirs, (3) plague "foci" of the past were merely sites of conspicuous epizootics, they did not necessarily correspond to permanent foci, and could result from epizootic migrations over considerable distances, and (4) a number of assumptions about areas of greatest epizootic potential can be made by analyzing the pattern of recurrent plague outbreaks in the past. Since then the validity of these assumptions has been tested by the largest outbreak of plague since the early 1940's. We believe that the results have proved the crystal ball largely correct, resulting in much more precise and efficient epizootic surveillance and deployment of control measures than in the past. The outbreak was for us an administrative emergency that exceeded the capacities of the State Health Department. We greatly appreciated the vital help and cooperation of other agencies and individuals. The U.S, Public Health Service accepted a heavy burden of laboratory testing through its San Francisco Field Station, and provided emergency field personnel. The contributions of State Department of Agriculture, Bureau of Weed and Vertebrate Pest Control; U.S. Parks, Forest Service and Bureau of Land Management; local health and agriculture department; and State Division of Parks personnel were essential in accomplishing control work, as well as epizootic surveillance.
Resumo:
ABSTRACT: Under Western Australian legislation, landholders have an obligation to control rabbits on their properties; local authorities the responsibility to supervise their work whilst the Agriculture Protection Board has a Statewide supervisory and co-ordination role. Prior to 1950 (when the Agriculture Protection Board was formed) the central role was in the hands of a Government department which, through lack of staff and money was unable to provide adequate supervision, and rabbits were in plague proportions. Since 1950, the Board has actively engaged in a vigorous policy aimed at tighter control and supervision. To enable this, the Board has entered into a voluntary scheme with local authorities whereby the role of local supervision of landholders is passed to staff employed by the Board, but jointly financed by the local authority and the Board. A contract poisoning service is also pro¬vided by the Agriculture Protection Board to any landholder who is unable or unwilling, to meet his obligations in this area. Both services are subsidised. Two of the major reasons for the poor level of control existing before 1950, have thereby been minimised. Soon after its formation, the Board set up a research section which has devoted nearly all of its activities to applied research on control of the State's many vertebrate pest problems. In the rabbit control area, poisoning has received most attention. The "One-Shot" method of poisoning was developed after years of research. Fumigation is at present being closely studied as is the economics of complete eradication from some areas of the State. Greatest needs in the applied rabbit research field at present are: (1) a selective poison, or poisoning regime, which will not harm stock, and (2) a more complete understanding of the economics of control and eradication. The serious rabbit problem which existed in 1950 has been reduced to very small proportions, by organisational development using local research findings. These organisational developments have been implemented by circumvention rather than confrontation.
Resumo:
As you can see from the general tenor of the printed program for this seminar, I am in the unenviable position of trying to discourage you from certain types of chemical control; but my assigned topic "Side Effects of Persistent Toxicants," implies that mission. However, my remarks may be somewhat anticlimax at this time, because it is now generally conceded that we need to reevaluate certain chemicals in control work and to restrict or severely curtail use of those that per¬sist for long periods in the environment. So let me detail my reasons for a somewhat negative attitude toward the use of the persistent hydrocarbons from my experience with the effects of these materials on birds. But first a few words of caution about control work in general, which so often disrupts natural processes and leads to new and unforseen difficulties. As an example, I think of the irruption of mice in the Klamath valley in northern California and southern Oregon in the late '50's. Intensive predator control, particularly of coyotes, but also of hawks and owls, was followed by a severe outbreak of mice in the spring of 1958. To combat the plague of mice, poisoned bait (1080 and zinc phosphide) was widely distributed in an area used by 500,000 waterfowl each spring. More than 3,000 geese were poisoned, so driv¬ing parties were organized to keep the geese off the treated fields. Here it seems conceivable that the whole chain of costly events--cost of the original and probably unnecessary predator control, economic loss to crops from the mouse outbreak, another poisoning campaign to combat the mice, loss of valuable waterfowl resources, and man-hours involved in flushing geese from the fields--might have been averted by a policy of not interfering with the original predator-prey relationship. This points to a dilemma we always face. (We create deplorable situations by clumsy interference with natural processes, then seek artificial cures to correct our mistakes.) For example, we spend millions of dollars in seeking cures for cancer, but do little or nothing about restricting the use of known or suspected carcinogens such as nicotine and DDT.
Resumo:
In this session, "New Diversity" programs are designed and proposed, aimed at enabling minority staff, stu¬dents and faculty the kind of "cultural inoculation" needed to be able to address the concerns which plague most campuses.
Resumo:
• Chronic Wasting Disease Update: Wisconsin, Minnesota, South Dakota, Colorado; National CWD Management – USDA & USDI National Plan for Assisting States, Federal Agencies, and Tribes in Managing Chronic Wasting Disease in Free-ranging and Captive Cervids • West Nile virus (WNV) reaches the Pacific coast • West Nile Virus in Blue Jays • Idaho Brucellosis Linked to Wildlife: All of the epidemiological and laboratory information clearly indicates that brucellosis-infected elk transmitted the disease to the cattle herd. • Tularemia caused a die-off of captured wild prairie dogs this summer at a Texas commercial exotic animal facility that distributes the animals for sale as pets. • Raptors can acquire avian vacuolar myelinopathy (AVM) via ingestion of other affected birds. • House Finch Mycoplasmosis: bacterial eye disease of house finches • Raccoon Rabies report • Toxoplasmosis – The newest finding regarding sea otters in California is the importance of toxoplasmosis as a mortality factor. Toxoplasma gondii is a protozoan parasite that can invade visceral organs and the central nervous system to cause acute, disseminated tissue necrosis and fatal meningoencephalitis in susceptible animals. In recent years, 36% of dead sea otters examined have been infected. Another tissue-invading protozoan, Sarcocystis neurona, also was found in 4% of the otters. • Recovery of remnant populations of the endangered black-footed ferret have been hampered by sylvatic plague, which is caused by the bacterium Yersinia pestis. • Dr. Samantha Gibbs received the Wildlife Disease Association’s Student Research Recognition Award. Dr. Cynthia Tate was selected by the American Association of Veterinary Parasitologists to receive the Best Student Presentation Award. Dr. Andrea Varela won second place in the Student Presentation Award for her presentation at the meeting of the American Association Veterinary Parasitologists. Mr. Michael Yabsley received the Wildlife Disease Association Student Scholarship and the S.A. Ewing Vectorborne Parasitology Award from the University of Georgia’s College of Veterinary Medicine.