10 resultados para Phocoena phocoena

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Heterochrony, the change in timing of developmental processes, is thought to be a key process shaping the numerous limb morphologies of tetrapods. Through a delayed offset in digit development, all cetaceans (i.e., whales, dolphins, and porpoises) have evolved supernumary phalanges (hyperphalangy). Moreover, some toothed cetaceans further alter digital morphologies by delayed endochondral and perichondral ossification of individual elements. In the harbor porpoise (Phocoena phocoena), these paedomorphic patterns have created poorly ossified phalangeal elements. However, no studies have addressed this morphology in other porpoise taxa. This study documents the timing of carpal and digital epiphyseal ossification in the poorly studied vaquita (Phocoena sinus) based on radiographs (n = 18) of known-age specimens. Patterns of vaquita manus ossification were compared between other porpoise and delphinid taxa. Adult vaquitas are paedomorphic in carpal, metacarpal, and digital development as they maintain a juvenile ossification pattern relative to that of other porpoise species of equivalent ages. Vaquitas also ossify fewer carpal elements as compared to other porpoise and some delphinid cetaceans, and ossification arrests relative to that of the harbor porpoise. Vaquitas also display sexual dimorphism as females reach a greater body size and display more ossified elements in the manus relative to their paedomorphic male cohorts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Guiler, Burton and Gales (1987) reported a cranium (Tasmanian Museum No. A141 1) they identified as belonging to Burmeister’s porpoise, Phocoena spinipinnis Burmeister, 1865 from Heard Island (53°S 73°30’E). They noted that P. spinipinnis was previously known only from the cold-temperate coastal waters of South America and claimed that this cranium was evidence that the species has a much wider distribution than previously known. We have examined the photographs and details of their specimen and re-identify it here as Australophocaena dioptrica (Lahille, 1912) (family Phocoenidae). Barnes (1985) listed several features that distinguish the skulls of species within the subfamily Phocoenoidinae (including A. dioptrica) from those species within the Phocoeninae (including Phocoena spp.). Features that distinguish A. dioptrica from P. spinipinnis, dearly visible in the published photographs of the cranium from Heard Island, include: a relatively small, oval-shaped temporal fossa; an elevated, high-vaulted braincase that slopes abruptly onto the narial region; relatively large, high and convex premaxillary bosses; dorso-ventrally expanded zygomatic process of the squamosal; short and antetoposteriorly expanded postorbital process of the fronds; and maxillae extendmg nearly to the dorsal margin of the supraoccipital on the top of the skull. In all these features, the Heard Island specimen conforms with those of A. dioptrica. Crania of A. dioptrica have been illustrated by Hamilton (1941), Norris and McFarland (1958), Brownell (1975), Fordyce et al. (1984), and Barnes (1985). Crania of P. spinipinnis have been illustrated by Norris and McFarland (1958) and Brownell and Praderi (1984).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Order Cetacea, Suborder Odontoceti, Superfamily Delphinoidea, Family Phocoenidae. The genus Phocoena now includes four species. No subspecies are rec- ognized in P. spinipinnis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Order Cetacea, Suborder Odontoceti, Superfamily Delphinoidea, Family Phocoenidae. Four species are included in the genus. No subspecies are recognized in P. sinus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Between 1991 and 1993, Alaska harbor porpoise (Phocoena phocoena) abundance was investigated during aerial surveys throughout much of the coastal and offshore waters from Bristol Bay in the eastern Bering Sea to Dixon Entrance in Southeast Alaska. Line-transect methodology was used, and only those observations made during optimal conditions were analyzed. Survey data indicated densities of 4.48 groups/100 km2, or approximately 3,531 harbor porpoises (95% C.I. 2,206-5,651) in Bristol Bay and 0.54 groups/100 km2, or 136 harbor porpoises (95% C.I. 11-1,645) for Cook Inlet. Efforts off Kodiak Island resulted in densities of 1.85 groups/100 km2, or an abundance estimate of 740 (95% C.I. 259-2,115). Surveys off the south side of the Alaska Peninsula found densities of 2.03 groups/100 km2 and an abundance estimate of 551 (95% C.I. 423-719). Surveys of offshore waters from Prince William Sound to Dixon Entrance yielded densities of 4.02 groups/100 km’ and an abundance estimate of 3,982 (95% C.I. 2,567-6,177). Combining all years and areas yielded an uncorrected density estimate of 3.82 porpoises per 100 km2, resulting in an abundance estimate of 8,940 porpoises (CV = 13.8%) with a 95% confidence interval of 6,746-11,848. Using correction factors from other studies to adjust for animals missed by observers, the total number of Alaska harbor porpoises is probably three times this number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vaquita (Spanish for "little cow"), or Gulf of California harbor porpoise (Phocoena sinus), has the most limited range of any marine cetacean and is probably the rarest. It has been caught incidentally in gill nets set commercially for totoaba (Totoaba macdonaldi), large fish that were over-exploited in the upper Gulf of California until they, too, were endangered. In 1975. the Mexican Government announced a total indefinite closure on fishing for totoaba, Between the time this porpoise was described as new to science (1958) and its listing by the U.S. Fish and Wildlife Service as Endangered (early 1985), the vaquita was known from only 26 confirmed records (partial remains found on beaches) and a few sightings of live animals. (Note: the vernacular name "cochito" was cited when this animal was listed, but biologists have since learned that "vaquita" is the term used by most local fishermen.) The Endangered Species Technical Bulletin story about its listing (see BULLETIN Vol. X No. 2) said the species was on the brink of extinction "if it still exists."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent likely extinction of the baiji (Chinese river dolphin [Lipotes vexillifer]) (Turvey et al. 2007) makes the vaquita (Gulf of California porpoise [Phocoena sinus]) the most endangered cetacean. The vaquita has the smallest range of any porpoise, dolphin, or whale and, like the baiji, has long been threatened primarily by accidental deaths in fishing gear (bycatch) (Rojas-Bracho et al. 2006). Despite repeated recommendations from scientific bodies and conservation organizations, no effective actions have been taken to remove nets from the vaquita’s environment. Here, we address three questions that are important to vaquita conservation: (1) How many vaquitas remain? (2) How much time is left to find a solution to the bycatch problem? and (3) Are further abundance surveys or bycatch estimates needed to justify the immediate removal of all entangling nets from the range of the vaquita? Our answers are, in short: (1) there are about 150 vaquitas left, (2) there are at most 2 years within which to find a solution, and (3) further abundance surveys or bycatch estimates are not needed. The answers to the first two questions make clear that action is needed now, whereas the answer to the last question removes the excuse of uncertainty as a delay tactic. Herein we explain our reasoning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prior studies of phylogenetic relationships among phocoenids based on morphology and molecular sequence data conflict and yield unresolved relationships among species. This study evaluates a comprehensive set of cranial, postcranial, and soft anatomical characters to infer interrelationships among extant species and several well-known fossil phocoenids, using two different methods to analyze polymorphic data: polymorphic coding and frequency step matrix. Our phylogenetic results confirmed phocoenid monophyly. The division of Phocoenidae into two subfamilies previously proposed was rejected, as well as the alliance of the two extinct genera Salumiphocaena and Piscolithax with Phocoena dioptrica and Phocoenoides dalli. Extinct phocoenids are basal to all extant species. We also examined the origin and distribution of porpoises within the context of this phylogenetic framework. Phocoenid phylogeny together with available geologic evidence suggests that the early history of phocoenids was centered in the North Pacific during the middle Miocene, with subsequent dispersal into the southern hemisphere in the middle Pliocene. A cooling period in the Pleistocene allowed dispersal of the southern ancestor of Phocoena sinusinto the North Pacific (Gulf of California).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is presented for estimating age-specific mortality based on minimal information: a model life table and an estimate of longevity. This approach uses expected patterns of mammalian survivorship to define a general model of age-specific mortality rates. One such model life table is based on data for northern fur seals (Callorhinus ursinus) using Siler’s (1979) 5-parameter competing risk model. Alternative model life tables are based on historical data for human females and on a published model for Old World monkeys. Survival rates for a marine mammal species are then calculated by scaling these models by the longevity of that species. By using a realistic model (instead of assuming constant mortality), one can see more easily the real biological limits to population growth. The mortality estimation procedure is illustrated with examples of spotted dolphins (Stenella attenuata) and harbor porpoise (Phocoena phocoena).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim To assess the distribution, group size, seasonal occurrence and annual trends of cetaceans. Location The study area included all major inland waters of Southeast Alaska. Methods Between 1991 and 2007, cetacean surveys were conducted by observers who kept a constant watch when the vessel was underway and recorded all cetaceans encountered. For each species, we examined distributional patterns, group size, seasonal occurrence and annual trends. Analysis of variance (anova F) was used to test for differences in group sizes between multiple means, and Student’s t-test was used to detect differences between pairwise means. Cetacean seasonal occurrence and annual trends were investigated using a generalized linear model framework. Results Humpback whales (Megaptera novaeangliae) were seen throughout the region, with numbers lowest in spring and highest in the fall. Fin whale (Balaenoptera physalus) and minke whale (Balaenoptera acutorostrata) distributions were more restricted than that reported for humpback whales, and the low number of sightings precluded evaluating seasonal trends. Three killer whale (Orcinus orca) eco-types were documented with distributions occurring throughout inland waters. Seasonal patterns were not detected or could not be evaluated for resident and offshore killer whales, respectively; however, the transient eco-type was more abundant in the summer. Dall’s porpoise (Phocoenoides dalli) were distributed throughout the region, with more sightings in spring and summer than in fall. Harbour porpoise (Phocoena phocoena) distribution was clumped, with concentrations occurring in the Icy Strait/Glacier Bay and Wrangell areas and with no evidence of seasonality. Pacific white-sided dolphins (Lagenorhynchus obliquidens) were observed only occasionally, with more sightings in the spring. For most species, group size varied on both an annual and seasonal basis. Main conclusions Seven cetacean species occupy the inland waters of Southeast Alaska, with distribution, group size, seasonal occurrence and annual trends varying by species. Future studies that compare spatial and temporal patterns with other features (e.g. oceanography, prey resources) may help in identifying the key factors that support the high density and biodiversity of cetaceans found in this region. An increased understanding of the region’s marine ecology is an essential step towards ensuring the long-term conservation of cetaceans in Southeast Alaska.