2 resultados para Passenger Miles Traveled.
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Deer-vehicle collisions (DVCs) impact the economic and social well being of humans. We examined large-scale patterns behind DVCs across 3 ecoregions: Southern Lower Peninsula (SLP), Northern Lower Peninsula (NLP), and Upper Peninsula (UP) in Michigan. A 3 component conceptual model of DVCs with drivers, deer, and a landscape was the framework of analysis. The conceptual model was parameterized into a parsimonious mathematical model. The dependent variable was DVCs by county by ecoregion and the independent variables were percent forest cover, percent crop cover, mean annual vehicle miles traveled (VMT), and mean deer density index (DDI) by county. A discriminant function analysis of the 4 independent variables by counties by ecoregion indicated low misclassification, and provided support to the groupings by ecoregions. The global model and all sub-models were run for the 3 ecoregions and evaluated using information-theoretic approaches. Adjusted R2 values for the global model increased substantially from the SLP (0.21) to the NLP (0.54) to the UP (0.72). VMT and DDI were important variables across all 3 ecoregions. Percent crop cover played an important role in DVCs in the SLP and UP. The scale at which causal factors of DVCs operate appear to be finer in southern Michigan than in northern Michigan. Reduction of DVCs will likely occur only through a reduction in deer density, a reduction in traffic volume, or in modification of sitespecific factors, such as driver behavior, sight distance, highway features, or speed limits.
Resumo:
Airports worldwide are at a disadvantage when it comes to being able to spot birds and warn aircrews about the location of flocks either on the ground or close to the airfield. Birds simply cannot be easily seen during the day and are nearly invisible targets for planes at night or during low visibility. Thermal imaging (infrared) devices can be used to allow ground and tower personnel to pinpoint bird locations day or night, thus giving the airport operators the ability to launch countermeasures or simply warn the aircrews. This technology is available now, though it has been predominately isolated to medical and military system modifications. The cost of these devices has dropped significantly in recent years as technology, capability, and availability have continued to increase. Davison Army Airfield (DAAF), which is located about 20 miles south of Ronald Reagan National Airport in Washington, DC, is the transient home to many bird species including an abundance of ducks, seagulls, pigeons, and migrating Canadian geese. Over the past few years, DAAF implemented a variety of measures in an attempt to control the bird hazards on the airfield. Unfortunately, when it came to controlling these birds on or near our runways and aircraft movement areas we were more reactive than proactive. We would do airfield checks several times an hour to detect and deter any birds in these areas. The deterrents used included vehicle/human presence, pyrotechnics, and the periodic use of a trained border collie. At the time, we felt like we were doing all we could to reduce the threat to aircraft and human life. It was not until a near fatal accident in October 1998, when we truly realized how dangerous our operating environment really was to aircraft at or near the airfield. It was at this time, we had a C-12 (twin-engine passenger plane) land on our primary runway at night. The tower cleared the aircraft to land, and upon touchdown to the runway the aircraft collided with a flock of geese. Neither the tower nor the crew of the aircraft saw the geese because they were obscured in the darkness. The end result was 12 dead geese and $374,000 damage to the C-12. Fortunately, there were no human fatalities, but it was painfully clear we needed to improve our method of clearing the runway at night and during low visibility conditions. It was through this realization that we ventured to the U.S. Army Communications and Electronics Command for ideas on ways to deal with our threat. It was through a sub-organization within this command, Night Vision Labs, that we realized the possibilities of modifying thermal imagery and infrared technology to detecting wildlife on airports.