5 resultados para Park
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Black bears (Ursus americanus) forage selectively in natural environments. To determine if bears also forage selectively for anthropogenic resources we analyzed data on vehicles broken into by bears from Yosemite National Park, California. We classified vehicles into 9 categories based on their make and model and collected data on use (2001–2007) and availability (2004–2005). From 2001 to 2007 bears broke into 908 vehicles at the following rates: minivan (26.0%), sport–utility vehicle (22.5%), small car (17.1%), sedan (13.7%), truck (11.9%), van (4.2%), sports car (1.7%), coupe (1.7%), and station wagon (1.4%). Only use of minivans (29%) during 2004–2005 was significantly higher than expected (7%). We discuss several competing hypotheses about why bears selected minivans.
Resumo:
It is a real treat for me to be here today on behalf of the university as we dedicate Fleming Fields Recreational Sports Park. As Vice Chancellor of the Institute of Agriculture and Natural Resources at the University of Nebraska-Lincoln, I am especially pleased to be able to take part in honoring the memory of Jim, Bob, and Dave Fleming, three outstanding-University of - Nebraska graduates.
Resumo:
Grassland ecosystems have been severely reduced and grassland bird populations have experienced consistent declines. National Park Service (NPS) properties on the Great Plains provide breeding habitat for grassland songbirds, though little is known about the quality of this habitat. A short-term study on songbirds at three NPS properties complemented current monitoring, providing an among park comparison addressing grassland bird productivity and fidelity relative to NPS property size. During 2008-2009, I assessed avian species richness, and estimated bird density and grassland songbird nest success. Bird species richness was greatest at small and medium sites, while number of nesting obligate species was greatest at the large site. Species-specific densities varied among sites, with few grassland obligates occurring at all three sites. Nest success estimates for grassland obligates were highest at the small site and lower at the large site. Another method to quantify habitat quality is assessment of breeding site fidelity. Current extrinsic markers used in monitoring site fidelity are inadequate for small birds; stable isotope analyses provide an alternative. I compared two techniques for assigning stable isotope tissue origin and measured grassland songbird site fidelity. My method of assigning origin provided site-specific variances of expected stable isotope values, an improvement over the most commonly used method. Fidelity tended to be higher at the large site, which may indicate a more robust breeding community of grassland birds. The small size of two of my sites precluded large sample sizes and made strong inferences difficult. To quantify how scientists cope with weak inference, I conducted a literature review. Strong inference was rarely observed, and most authors of weak-inference papers provided specific management recommendations. I suggest that adaptive management is an ideal method to resolve uncertainty from weak inference. Managers should consider my results within the context of regional and global management and the extent to which their unit might aide songbird conservation.
Resumo:
Research has provided no definitive answers on whether PET plastic bottles or aluminum cans are a more environmentally sustainable choice as soda containers. This paper researches the fuel used in recycling each of these materials from Yellowstone National Park to processing locations. The data is used to determine which of these alternatives use less fuel in this process. It was found that plastics use more fuel when transported from Yellowstone National Park to the processing center. Aluminum uses less fuel per ton to transport from Yellowstone to the processing center. The conclusions from this research may have implications on which material would be advised to use in selling soda in Yellowstone National Park.
Resumo:
The changes in diatom species composition in a sediment core from Crevice Lake, Yellowstone National Park, spanning the past 2550 yr, were used to reconstruct long-term limnological and ecological conditions that may be related to late Holocene climate variability. Planktic forms dominate the fossil diatom assemblages throughout this record, but changes in species dominance indicate varying nutrient levels over time, particularly phosphorus. The changes in the nutrient concentrations in the lake were probably driven by changes in temperature and wind strength that affected the duration of watercolumn mixing and thus the extent of nutrient recycling from deep waters. Prior to 2100 cal before present (BP), Stephanodiscus minutulus and Synedra tenera dominated, suggesting long cool springs with extensive regeneration of phosphorus from the hypolimnion that resulted from isothermal mixing. From 2100 to 800 cal BP, these species were replaced by Cyclotella michiganiana and Cyclotella bodanica. These species are characteristic of lower nutrient concentrations and are interpreted here to reflect warm summers with long periods of thermal stratification. From 800 to 50 cal BP, S. minutulus dominated the diatom assemblage, suggesting a return to lengthy mixing during spring. The most dramatic late Holocene changes in the fossil diatom assemblages occurred during the transition from the Medieval Period to the Little Ice Age, approximately 800 cal BP.