4 resultados para Packets
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Optical networks provide a new dimension to meet the demands of exponentially growing traffic. Optical packet switching requires a good switch architecture, which eliminates the O/E/O conversion as much as possible. Wavelength Division Multiplexing (WDM) provides a breakthrough to exploit the huge bandwidth of the optical fiber. Different applications have different requirements, which necessitate employing differentiated services. This paper presents the idea of a priority-based λ-scheduler, where the packets are differentiated into different classes and services are provided accordingly. For example, class 0 can correspond to non real time applications like email and ftp, while class 1 can correspond to real-time audio and video communications. The architecture is based on that of the λ-scheduler and hence it has the added advantage of reduced component cost by using WDM internally.
Resumo:
The security of the two party Diffie-Hellman key exchange protocol is currently based on the discrete logarithm problem (DLP). However, it can also be built upon the elliptic curve discrete logarithm problem (ECDLP). Most proposed secure group communication schemes employ the DLP-based Diffie-Hellman protocol. This paper proposes the ECDLP-based Diffie-Hellman protocols for secure group communication and evaluates their performance on wireless ad hoc networks. The proposed schemes are compared at the same security level with DLP-based group protocols under different channel conditions. Our experiments and analysis show that the Tree-based Group Elliptic Curve Diffie-Hellman (TGECDH) protocol is the best in overall performance for secure group communication among the four schemes discussed in the paper. Low communication overhead, relatively low computation load and short packets are the main reasons for the good performance of the TGECDH protocol.
Resumo:
In this action research study of my classroom of 8th grade algebra, I investigated students’ discussion of mathematics and how it relates to interest in the subject. Discussion is a powerful tool in the classroom. By relying too heavily on drill and practice, a teacher may lose any individual student insight into the learning process. However, in order for the discussion to be effective, students must be provided with structure and purpose. It is unrealistic to expect middle school age students to provide their own structure and purpose; a packet was constructed that would allow the students to both show their thoughts and work as a small group toward a common goal. The students showed more interest in the subject in question as they related to the algebra topics being studied. The students appreciated the packets as a way to facilitate discussion rather than as a vehicle for practicing concepts. Students still had a need for practice problems as part of their homework. As a result of this research, it is clear that discussion packets are very useful as a part of daily instruction. While there are modifications that must be made to the original packets to more clearly express the expectations in question, discussion packets will continue to be an effective tool in the classroom.
Resumo:
In this paper, a cross-layer solution for packet size optimization in wireless sensor networks (WSN) is introduced such that the effects of multi-hop routing, the broadcast nature of the physical wireless channel, and the effects of error control techniques are captured. A key result of this paper is that contrary to the conventional wireless networks, in wireless sensor networks, longer packets reduce the collision probability. Consequently, an optimization solution is formalized by using three different objective functions, i.e., packet throughput, energy consumption, and resource utilization. Furthermore, the effects of end-to-end latency and reliability constraints are investigated that may be required by a particular application. As a result, a generic, cross-layer optimization framework is developed to determine the optimal packet size in WSN. This framework is further extended to determine the optimal packet size in underwater and underground sensor networks. From this framework, the optimal packet sizes under various network parameters are determined.