3 resultados para Pacific Rim studies

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under the 1994 amendments to the Marine Mammal Protection Act (MMPA), the National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (USFWS) are required to publish Stock Assessment Reports for all stocks of marine mammals within U.S. waters, to review new information every year for strategic stocks and every three years for non-strategic stocks, and to update the stock assessment reports when significant new information becomes available. This report presents stock assessments for 13 Pacific marine mammal stocks under NMFS jurisdiction, including 8 “strategic” stocks and 5 “non-strategic” stocks (see summary table). A new stock assessment for humpback whales in American Samoa waters is included in the Pacific reports for the first time. New or revised abundance estimates are available for 9 stocks, including Eastern North Pacific blue whales, American Samoa humpback whales, five U.S. west coast harbor porpoise stocks, the Hawaiian monk seal, and southern resident killer whales. A change in the abundance estimate of Eastern North Pacific blue whales reflects a recommendation from the Pacific Scientific Review Group to utilize mark-recapture estimates for this population, which provide a better estimate of total population size than the average of recent line-transect and mark-recapture estimates. The ‘Northern Oregon/Washington Coast Stock’ harbor porpoise stock assessment includes a name change (‘Oregon’ is appended to ‘Northern Oregon’) to reflect recent stock boundary changes. Changes in abundance estimates for the two stocks of harbor porpoise that occur in Oregon waters are the result of these boundary changes, and do not reflect biological changes in the populations. Updated information on the three stocks of false killer whales in Hawaiian waters is also included in these reports. Information on the remaining 50 Pacific region stocks will be reprinted without revision in the final 2009 reports and currently appears in the 2008 reports (Carretta et al. 2009). Stock Assessments for Alaskan marine mammals are published by the National Marine Mammal Laboratory (NMML) in a separate report. Pacific region stock assessments include those studied by the Southwest Fisheries Science Center (SWFSC, La Jolla, California), the Pacific Islands Fisheries Science Center (PIFSC, Honolulu, Hawaii), the National Marine Mammal Laboratory (NMML, Seattle, Washington), and the Northwest Fisheries Science Center (NWFSC, Seattle, WA). Northwest Fisheries Science Center staff prepared the report on the Eastern North Pacific Southern Resident killer whale. National Marine Mammal Laboratory staff prepared the Northern Oregon/Washington coast harbor porpoise stock assessment. Pacific Islands Fisheries Science Center staff prepared the report on the Hawaiian monk seal. Southwest Fisheries Science Center staff prepared stock assessments for 9 stocks. The stock assessment for the American Samoa humpback whale was prepared by staff from the Center for Coastal Studies, Hawaiian Islands Humpback National Marine Sanctuary, the Smithsonian Institution, and the Southwest Fisheries Science Center. Draft versions of the stock assessment reports were reviewed by the Pacific Scientific Review Group at the November 2008, Maui meeting. The authors also wish to thank those who provided unpublished data, especially Robin Baird and Joseph Mobley, who provided valuable information on Hawaiian cetaceans. Any omissions or errors are the sole responsibility of the authors. This is a working document and individual stock assessment reports will be updated as new information on marine mammal stocks and fisheries becomes available. Background information and guidelines for preparing stock assessment reports are reviewed in Wade and Angliss (1997). The authors solicit any new information or comments which would improve future stock assessment reports. These Stock Assessment Reports summarize information from a wide range of sources and an extensive bibliography of all sources is given in each report. We strongly urge users of this document to refer to and cite original literature sources rather than citing this report or previous Stock Assessment Reports. If the original sources are not accessible, the citation should follow the format: [Original source], as cited in [this Stock Assessment Report citation].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paleoclimatic and paleoceanographic history of the Middle and Late Miocene marginal eastern North Pacific as been studied in a north-to-south transect encompassing DSDP Site 173, the Newport Beach surface section, and DSDP Site 470, based on quantitative diatom and planktic foraminiferal analyses. Fourteen cold and 12 warm events that show close agreement with other microfossil studies as well as oxygen isotope records from low-latitude Pacific sites have been identified. Hiatuses are recognized at 7 to 6.5 Ma. 9.8 to 8.5 Ma, and 12 to 11 Ma at the three reference localities, and they correspond to widely recognized deep-sea hiatuses in the World Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seidel and Booth (1960) wrote that the "life histories of the genus Microtus are not numerous in the literature." In support of his observation he cited 6 publications, all dated between 1891 and 1953. Since then the literature has exploded with a proliferation of publications. An international literature review recently revealed over 3,500 citations for the genus. When Pitymys and Clethrionomys are included another 350 and 1,880, respectively, were found. Over the last 10 years approximately 3 new publications on voles appeared every 4 days; a significant output for what some would consider such an insignificant species. Most of the publications were the result of graduate research projects on population dynamics and species ecology. As such, many do not explore more than the rudimentary ecological relationships between the animal and their environments. Unfortunate, as well, is that all but one confined their observations to only a small part of their total environment. For many of these animals, their life underground may be more important for their survival than that above ground. Trapping studies conducted by Godfrey and Askham (1988) with permanently placed pitfall live traps in orchards revealed a significant inverse population fluctuation during the year. During the winter, when populations are expected to decrease, as many as 6 to 8 mature Microtus montanus were collected at any 1 time in the traps after several centimeters of snow accumulation. During the summer, when populations are expected to increase, virtually no animals were collected in the traps. According to current population dynamics theory, greater numbers of animals, including increasingly larger numbers of immature members of the community, should appear in any sample between the onset of the breeding period, generally in the spring, taper off during the latter part of the production season, usually late summer, and then decline as the limiting factors begin to take effect. For us, we trapped more animals in the fall and early winter than we did during the spring and summer. A review of the above literature did little to answer our question. Where are the animals going during the summer and why?