4 resultados para Pacific Northwest
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Seidel and Booth (1960) wrote that the "life histories of the genus Microtus are not numerous in the literature." In support of his observation he cited 6 publications, all dated between 1891 and 1953. Since then the literature has exploded with a proliferation of publications. An international literature review recently revealed over 3,500 citations for the genus. When Pitymys and Clethrionomys are included another 350 and 1,880, respectively, were found. Over the last 10 years approximately 3 new publications on voles appeared every 4 days; a significant output for what some would consider such an insignificant species. Most of the publications were the result of graduate research projects on population dynamics and species ecology. As such, many do not explore more than the rudimentary ecological relationships between the animal and their environments. Unfortunate, as well, is that all but one confined their observations to only a small part of their total environment. For many of these animals, their life underground may be more important for their survival than that above ground. Trapping studies conducted by Godfrey and Askham (1988) with permanently placed pitfall live traps in orchards revealed a significant inverse population fluctuation during the year. During the winter, when populations are expected to decrease, as many as 6 to 8 mature Microtus montanus were collected at any 1 time in the traps after several centimeters of snow accumulation. During the summer, when populations are expected to increase, virtually no animals were collected in the traps. According to current population dynamics theory, greater numbers of animals, including increasingly larger numbers of immature members of the community, should appear in any sample between the onset of the breeding period, generally in the spring, taper off during the latter part of the production season, usually late summer, and then decline as the limiting factors begin to take effect. For us, we trapped more animals in the fall and early winter than we did during the spring and summer. A review of the above literature did little to answer our question. Where are the animals going during the summer and why?
Resumo:
Table of Contents: Make Way for Ducklings, page 4 With help from refuge experts, roads and bridges can be built to accommodate wildlife. Katrina Heroes, pages 8-9 Extraordinary diaries from refuge staffers who were there when Katrina came calling. Focus on…Reaching Youth , page 10-15 Refuges give young people a chance to learn art, poetry, native culture, service – and stewardship. Nisqually: Growing and Restoring, page 17 The Outstanding Refuge Plan of 2005 opens the door to the largest estuary restoration project in the Pacific Northwest.
Resumo:
Pollen and geochemical data from Little Lake, western Oregon, suggest several patterns of millennial-scale environmental change during marine isotope stage (MIS) 2 (14,100–27,600 cal yr B.P.) and the latter part of MIS 3 (27,600–42,500 cal yr B.P.). During MIS 3, a series of transitions between warm- and cold-adapted taxa indicate that temperatures oscillated by ca. 2±–4±C every 1000–3000 yr. Highs and lows in summer insolation during MIS 3 are generally associated with the warmest and coldest intervals. Warm periods at Little Lake correlate with warm sea-surface temperatures in the Santa Barbara Basin. Changes in the strength of the subtropical high and the jet stream may account for synchronous changes at the two sites. During MIS 2, shifts between mesic and xeric subalpine forests suggest changes in precipitation every 1000–3000 yr. Increases in Tsuga heterophylla pollen at 25,000 and 22,000 cal yr B.P. imply brief warmings. Minimum summer insolation and maximum global ice-volumes during MIS 2 correspond to cold and dry conditions. Fluctuations in precipitation at Little Lake do not correlate with changes in the Santa Barbara Basin and may be explained by variations in the strength of the glacial anticyclone and the position of the jet stream.
Resumo:
As a nation we have gained world recognition for our ability to utilize our resources. In forestry our greatest accomplishments have been in the mechanization of harvest methods and in improvements in forest products. The renewal of this resource has been our greatest neglect. Though the end of the 19th Century marked the beginning of the conservation movement, it was not until a half century later that the force of economics through the demands of a growing population made forest re-establishment more than just a desire. Conservation in itself is a Utopian concept which requires other motivating forces to make it a reality. In the post-war years, and as late as the early 195O's, stocked land in the Pacific Northwest could be purchased for less than the cost of planting; the economic incentive was lacking. Only with sustained yield management and increased land values was there a balance in favor of true values. With greater effort placed on forest regeneration there was an increased need for methods of reducing losses to wildlife. The history of forest wildlife damage research, therefore, parallels that of forest land management; after rather austere beginnings, development became predominantly a response to economics. It was not until 1950 that the full time of one scientist was assigned to this important activity. The development of control methods for forest animal damage is a relatively new area of research. All animal life is dependent upon plants for its existence; forest wildlife is no exception. The removal of seed and foliage of undesirable plants often benefits the land managers; only when the losses or injuries are in conflict with man's interest is there damage involved. Unfortunately, the feeding activities of wildlife and the interests of the land managers are often in conflict. Few realize the breadth, scope, and subtilities associated with forest wildlife damage problems. There are not only numerous species of animals involved, but also a myriad of conditions, each combination possessing unique facets. It is a foregone conclusion that an understanding of the conditions is essential to facilitate a solution to any given problem. Though there are numerous methods of reducing animal damage, all of which have application under some situations, in this discussion emphasis will be placed on the role of chemicals and on western problems. Because of the broadness and complexity of the problem, generalizing is necessary and only brief coverage will be possible. However, an attempt will be made to discuss the use and limitations of various control methods.