10 resultados para POPULATION DYNAMICS (ECOLOGY)

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stage-structured population models predict transient population dynamics if the population deviates from the stable stage distribution. Ecologists’ interest in transient dynamics is growing because populations regularly deviate from the stable stage distribution, which can lead to transient dynamics that differ significantly from the stable stage dynamics. Because the structure of a population matrix (i.e., the number of life-history stages) can influence the predicted scale of the deviation, we explored the effect of matrix size on predicted transient dynamics and the resulting amplification of population size. First, we experimentally measured the transition rates between the different life-history stages and the adult fecundity and survival of the aphid, Acythosiphon pisum. Second, we used these data to parameterize models with different numbers of stages. Third, we compared model predictions with empirically measured transient population growth following the introduction of a single adult aphid. We find that the models with the largest number of life-history stages predicted the largest transient population growth rates, but in all models there was a considerable discrepancy between predicted and empirically measured transient peaks and a dramatic underestimation of final population sizes. For instance, the mean population size after 20 days was 2394 aphids compared to the highest predicted population size of 531 aphids; the predicted asymptotic growth rate (λmax) was consistent with the experiments. Possible explanations for this discrepancy are discussed. Includes 4 supplemental files.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expensive, extensive and apparently lethal control measures have been applied against many species of pest vertebrates and invertebrates for decades. In spite of this, few pests have been annihilated, and in many cases the stated goals have become progressively more modest, so that now we speak of saving foliage or a crop, rather than extermination. It is of interest to examine the reasons why animals are so difficult to exterminate, because this matter, of course, has implications for the type of control policy we pursue in the future. Also, it has implications for the problem of evaluating comparatively various resource management strategies. There are many biological mechanisms which could, in principle, enhance the performance of an animal population after control measures have been applied against it. These are of four main types: genetic, physiological, populationa1, and environmental. We are all familiar with the fact that in applying a control measure, we are, from the pest's point of view, applying intense selection pressure in favor of those individuals that may be preadapted to withstand the type of control being used. The well-known book by Brown (1958) documents, for invertebrates, a tremendous number of such cases. Presumably, vertebrates can show the same responses. Not quite so familiar is the evidence that sub-lethal doses of a lethal chemical may have a physiologically stimulating effect on population performance of the few individuals that happen to survive (Kuenen, 1958). With further research, we may find that this phenomenon occurs throughout the animal kingdom. Still less widely recognized is the fact that pest control elicits a populational homeostatic mechanism, as well as genetic and physiological homeostatic mechanisms. Many ecologists, such as Odum and Allee (1950, Slobodkin (1955), Klomp (1962) and the present author (1961, 1963) have pointed out that the curve for generation survival, or the curve for trend index as a function of last generations density is of great importance in population dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

English abstract: We hypothesized that the arctic fox, Alopex lagopus (Linnaeus), population on St. Lawrence Island was cyclic and that its fluctuations in size. structure, and productivity were correlated with the relative size of the population of northern voles, Microtus oeconomus Pallas, the primary prey. Based on a nine-year study, we determined that the variations in size of the fox and vole populations were similar, but they both were of low amplitude and not closely correlated. The high pregnancy rate (mean, 86%/yr) and numbers of young conceived (mean, 11.5/pregnancy) did not vary significantly among years, probably because of the consistently abundant and diverse food supply available to the foxes. The age composition of the trappers' catch of foxes each winter also was comparatively stable, but it was closely correlated with the size of the vole population in the previous summer. The survival of the young foxes during the summer probably was dependent on the availability of the voles, The composition of the catch also appeared to be influenced by immigration of faxes from the adjacent continents via the pack ice. French abstract: Nous avons émis I'hypothèse que la population du renard arctique, Alopex lagopus (Linnaeus), sur I'île Saint Lawrence était cyclique el que les fluctuations concernant sa tailIe, sa structure et sa productivité étaient corrélées à la taille relative de la population du campagnol nordique. Microtus oeconomus Pallas, sa principale proie. En nous appuyant sur une étude menée sur neuf ans, nous avons déterminé que les variations dans la taille des populations du renard et du campagnol étaient semblables. mais que toutes deux avaient une faible amplitude et n'étaient pas corrélées de façon étroite. Le taux de grossesse élevé (moyenne 86 p. cent/an) et Ie nombre dc petits conçus (moyenne 11,5/grossesse) ne variaient pas de façon significative au cours des ans, probablement à cause de I'abondance et de la variété de sources de nourriture pour les renards. La composition d'âge des prises des trappeurs était également stable d'un hiver à I'autre, mais elle était corrélée de façon étroite avec la taille de la population dc campagnols au cours de I'été précédent. La survie des renardeaux au cours de I'été dépendait probablement de la disponibilité des campagnols. La composition des prises semblait aussi être influencée par I'immigration des renards venant des terres continentales adjacentes par la voie de la banquise.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Weddell seals (Leptonychotes weddellii Lesson) at White Island, Antarctica form a small, completely enclosed, natural population hypothesized to be of recent origin, likely founded by individuals from nearby Erebus Bay. This population constitutes an ideal model to document a founder event and ensuing genetic drift, with implications for conservation. Here we combined historical accounts, census and tagging data since the late 1960s, and genetic data (41 microsatellite loci and mitochondrial DNA sequences) from 84 individuals representing nearly all individuals present between 1990 and 2000 to investigate the history of the founding of the White Island population, document its population dynamics and evaluate possible future threats. We fully resolved parental relationships over three overlapping generations. Cytonuclear disequilibrium among the first generation suggested that it comprised the direct descendants of a founding group. We estimated that the White Island population was founded by a small group of individuals that accessed the island during a brief break in the surrounding sea ice in the mid-1950s, consistent with historical accounts. Direct and indirect methods of calculating effective population size were highly congruent and suggested a minimum founding group consisting of three females and two males. The White Island population showed altered reproductive dynamics compared to Erebus Bay, including highly skewed sex ratio, documented inbred mating events, and the oldest known reproducing Weddell seals. A comparison with the putative source population showed that the White Island population has an effective inbreeding coefficient (Fe) of 0.29. Based on a pedigree analysis including the hypothesized founding group, 86% of the individuals for whom parents were known had inbreeding coefficients ranging 0.09–0.31. This high level of inbreeding was correlated with reduced pup survival. Seals at White Island therefore face the combined effects of low genetic variability, lack of immigration, and inbreeding depression. Ultimately, this study provides evidence of the effects of natural isolation on a large, long-lived vertebrate and can provide clues to the potential effects of anthropogenic- caused isolation of similar taxa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An investigation was made of the communities of gill monogene genus Dactylogyrus (Platyhelminthes, Monogenea) and the populations of blackspot parasite (Platyhelminthes, Trematoda) of Pimephales promelas, Notropis stramineus, and Semotilus atromaculatus in 3 distinct sites along the 3 converging tributaries in southeastern Nebraska from 2004 to 2006. This work constitutes the first multi-site, multi-year study of a complex community of Dactylogyrus spp. and their reproductive activities on native North American cyprinid species. The biological hypothesis that closely related species with direct lifecycles respond differently to shared environmental conditions was tested. It was revealed that in this system that, Cyprinid species do not share Dactylogyrus species, host size and sex are not predictive of infection, and Dactylogyrus community structure is stable, despite variation in seasonal occurrence and populations among sites. The biological hypothesis that closely related species have innate differences in reproductive activities that provide structure to their populations and influence their roles in the parasite community was tested. It was revealed that in this system, host size, sex, and collection site are not predictive of reproductive activities, that egg production is not always continuous and varies in duration among congeners, and that recruitment of larval Dactylogyrus is not continuous across parasites’ reproductive periods. Hatch timing and host availability, not reproductive timing, are the critical factors determining population dynamics of the gill monogenes in time and space. Lastly, the biological hypothesis that innate blackspot biology is responsible for parasite host-specificity, host recruitment strategies and parasite population structure was tested. Field collections revealed that for blackspot, host size, sex, and collection month and year are not predictive of infection, that parasite cysts survive winter, and that host movement is restricted among the 3 collection sites. Finally, experimental infections of hosts with cercaria isolated from 1st intermediate snail hosts reveal that cercarial biology, not environmental circumstances, are responsible for differences in infection among hosts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Each winter an estimated 350 million starlings, red-winged blackbirds (Agelaius phoeniceus), common grackles (Quiscalus quiscula), and brown-headed cowbirds (Molothrus ater) congregate in roosts in the southeastern United States (Meanley 1971, Meanley and Royall 1976). These birds have been of increasing concern because of agricultural damage claims (Stickley et al. 1976, Dolbeer et al. 1978), reputed health hazards (Monroe and Cronholm 1977), and other nuisance problems associated with them. Historical population trends (Dolbeer and Stehn 1979) and the source of winter-roosting blackbirds (Meanley 1971, Meanley and Dolbeer 1978, and Dolbeer 1978) have been summarized, but little information on the number of consecutive nights a bird returns to the same roost (roost fidelity) or the dynamics of a winter roost is available. The purpose of this paper is to present information on roost fidelity and population dynamics needed to better understand and manage winter blackbird and starling roosts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Seidel and Booth (1960) wrote that the "life histories of the genus Microtus are not numerous in the literature." In support of his observation he cited 6 publications, all dated between 1891 and 1953. Since then the literature has exploded with a proliferation of publications. An international literature review recently revealed over 3,500 citations for the genus. When Pitymys and Clethrionomys are included another 350 and 1,880, respectively, were found. Over the last 10 years approximately 3 new publications on voles appeared every 4 days; a significant output for what some would consider such an insignificant species. Most of the publications were the result of graduate research projects on population dynamics and species ecology. As such, many do not explore more than the rudimentary ecological relationships between the animal and their environments. Unfortunate, as well, is that all but one confined their observations to only a small part of their total environment. For many of these animals, their life underground may be more important for their survival than that above ground. Trapping studies conducted by Godfrey and Askham (1988) with permanently placed pitfall live traps in orchards revealed a significant inverse population fluctuation during the year. During the winter, when populations are expected to decrease, as many as 6 to 8 mature Microtus montanus were collected at any 1 time in the traps after several centimeters of snow accumulation. During the summer, when populations are expected to increase, virtually no animals were collected in the traps. According to current population dynamics theory, greater numbers of animals, including increasingly larger numbers of immature members of the community, should appear in any sample between the onset of the breeding period, generally in the spring, taper off during the latter part of the production season, usually late summer, and then decline as the limiting factors begin to take effect. For us, we trapped more animals in the fall and early winter than we did during the spring and summer. A review of the above literature did little to answer our question. Where are the animals going during the summer and why?

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tuberculosis, caused by Mycobacterium bovis, was first diagnosed in African buffalo in South Africa’s Kruger National Park in 1990. Over the past 15 years the disease has spread northwards leaving only the most northern buffalo herds unaffected. Evidence suggests that 10 other small and large mammalian species, including large predators, are spillover hosts. Wildlife tuberculosis has also been diagnosed in several adjacent private game reserves and in the Hluhluwe-iMfolozi Park, the third largest game reserve in South Africa. The tuberculosis epidemic has a number of implications, for which the full effect of some might only be seen in the long-term. Potential negative long-term effects on the population dynamics of certain social animal species and the direct threat for the survival of endangered species pose particular problems for wildlife conservationists. On the other hand, the risk of spillover infection to neighboring communal cattle raises concerns about human health at the wildlife–livestock–human interface, not only along the western boundary of Kruger National Park, but also with regards to the joint development of the Greater Limpopo Transfrontier Conservation Area with Zimbabwe and Mozambique. From an economic point of view, wildlife tuberculosis has resulted in national and international trade restrictions for affected species. The lack of diagnostic tools for most species and the absence of an effective vaccine make it currently impossible to contain and control this disease within an infected free-ranging ecosystem. Veterinary researchers and policy-makers have recognized the need to intensify research on this disease and the need to develop tools for control, initially targeting buffalo and lion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radio telemetry has become a standard tool for studying the behavior, physiology, life history traits, and population dynamics of marine mammals. Radio transmitters typically are attached to the hind flippers of pinnipeds or glued to the fur using marine epoxy or other cyanocrylare adhesives (Fedak et al. 1983, Bengtson 1993, Jeffries et al. 1993). Longterm data acquisition is difficult, however, because radio-flipper transmitters commonly tear from the webbing of the flipper and instruments that are glued to the fur are shed during the seasonal molt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stage-structured models that integrate demography and dispersal can be used to identify points in the life cycle with large effects on rates of population spatial spread, information that is vital in the development of containment strategies for invasive species. Current challenges in the application of these tools include: (1) accounting for large uncertainty in model parameters, which may violate assumptions of ‘‘local’’ perturbation metrics such as sensitivities and elasticities, and (2) forecasting not only asymptotic rates of spatial spread, as is usually done, but also transient spatial dynamics in the early stages of invasion. We developed an invasion model for the Diaprepes root weevil (DRW; Diaprepes abbreviatus [Coleoptera: Curculionidae]), a generalist herbivore that has invaded citrus-growing regions of the United States. We synthesized data on DRW demography and dispersal and generated predictions for asymptotic and transient peak invasion speeds, accounting for parameter uncertainty. We quantified the contributions of each parameter toward invasion speed using a ‘‘global’’ perturbation analysis, and we contrasted parameter contributions during the transient and asymptotic phases. We found that the asymptotic invasion speed was 0.02–0.028 km/week, although the transient peak invasion speed (0.03– 0.045 km/week) was significantly greater. Both asymptotic and transient invasions speeds were most responsive to weevil dispersal distances. However, demographic parameters that had large effects on asymptotic speed (e.g., survival of early-instar larvae) had little effect on transient speed. Comparison of the global analysis with lower-level elasticities indicated that local perturbation analysis would have generated unreliable predictions for the responsiveness of invasion speed to underlying parameters. Observed range expansion in southern Florida (1992–2006) was significantly lower than the invasion speed predicted by the model. Possible causes of this mismatch include overestimation of dispersal distances, demographic rates, and spatiotemporal variation in parameter values. This study demonstrates that, when parameter uncertainty is large, as is often the case, global perturbation analyses are needed to identify which points in the life cycle should be targets of management. Our results also suggest that effective strategies for reducing spread during the asymptotic phase may have little effect during the transient phase. Includes Appendix.