2 resultados para PMS-phage assay
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Numerous species of mammals are susceptible to Mycobacterium bovis, the causative agent of bovine tuberculosis (TB). Several wildlife hosts have emerged as reservoirs of M. bovis infection for domestic livestock in different countries. In the present study, blood samples were collected from Eurasian badgers (n = 1532), white-tailed deer (n = 463), brushtail possums (n = 129), and wild boar (n = 177) for evaluation of antibody responses to M. bovis infection by a lateral-flow rapid test (RT) and multiantigen print immunoassay (MAPIA). Magnitude of the antibody responses and antigen recognition patterns varied among the animals as determined by MAPIA; however, MPB83 was the most commonly recognized antigen for each host studied. Other seroreactive antigens included ESAT-6, CFP10, and MPB70. The agreement of the RT with culture results varied from 74% for possums to 81% for badgers to 90% for wild boar to 97% for white-tailed deer. Small numbers of wild boar and deer exposed to M. avium infection or paratuberculosis, respectively, did not cross-react in the RT, supporting the high specificity of the assay. In deer, whole blood samples reacted similarly to corresponding serum specimens (97% concordance), demonstrating the potential for field application. As previously demonstrated for badgers and deer, antibody responses to M. bovis infection in wild boar were positively associated with advanced disease. Together, these findings suggest that a rapid TB assay such as the RT may provide a useful screening tool for certain wildlife species that may be implicated in the maintenance and transmission of M. bovis infection to domestic livestock.
Resumo:
Tuberculosis due to Mycobacterium bovis in captive Cervidae was identified as an important disease in the United States in 1990 and prompted the addition of captive Cervidae to the USDA Uniform Methods and Rules for eradication of bovine tuberculosis. As well, M. bovis infection was identified in free-ranging white-tailed deer in northeast Michigan in 1995. Tuberculosis in both captive and free-ranging Cervidae represents a serious challenge to the eradication of M. bovis infection from the United States. Currently, the only approved antemortem tests for tuberculosis in Cervidae are the intradermal tuberculin skin test and the blood tuberculosis test (BTB). At present, the BTB is not available in North America. Tuberculin skin testing of Cervidae is time-consuming and involves repeated animal handling and risk of injury to animals and humans. This study evaluated the potential of a new blood-based assay for tuberculosis in Cervidae that would decrease animal handling, stress, and losses due to injury. In addition, a blood-based assay could provide a more rapid diagnosis. Twenty 6–9-month-old white-tailed deer, male and female, were experimentally inoculated by instillation of 300 colony-forming units of M. bovis in the tonsillar crypts. Seven, age-matched uninfected deer served as controls. Blood was collected on days 90, 126, 158, 180, 210, 238, 263, and 307 after inoculation and was analyzed for the production of interferon-γ (IFN-γ) in response to incubation with M. bovis purified protein derivative (PPDb), M. avium PPDa, pokeweed mitogen (PWM), or media alone. Production of IFN-g in response to PPDb was significantly greater (P < 0.05) at all time points in samples from M. bovis–infected deer as compared with uninfected control deer, whereas IFN-γ production to PWM did not differ significantly between infected and control deer. Measurement of IFN-γ production to PPDb may serve as a useful assay for the antemortem diagnosis of tuberculosis in Cervidae.