4 resultados para Open clusters and associations: individual: Berkeley 90

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prior models of the policy process have examined how human characteristics can affect policy decision-making in such a way that it leads to aggregate effects on policy outcomes as a whole. I develop a model of the policy process which suggests that emotions related to fair and unfair experiences in the same policy domain are utilized by decision-makers as policy criteria. In the lab, I empirically tested this, and find that emotions and experience related to fairness do influence the policy decision to move away from the status quo alternative. Based upon this result, I simulated the evolution of a society of agents engaged in decision-making using similar criteria. The simulation suggests that incentives have an important role in leading to cooperation and social success. The external validity of the simulation also implies that it can act as a platform for future evolutionary policy experimentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insect pollination is an essential ecosystem service, and bees are the principal pollinators of wild and cultivated plants. Habitat management and enhancement are a proven way to encourage wild bee populations, providing them with food and nesting resources. I examined bee diversity and abundance in plots managed by The Nature Conservancy near Wood River, NE. The plots were seeded with 2 seed mixes at 2 seeding rates: high diversity mix at the recommended rate, high diversity mix double the recommended rate, Natural Resources Conservation Service (NRCS) conservation planting (CP) 25 mix at one-half the recommended rate, and NRCS CP25 mix at the recommended rate. I measured wild bee abundance and diversity, and established a database of wild bees associated with the plots. I also compared genus richness and abundance among the plots using and aerial net and blue vane traps to collect bees. Significant differences were not observed in genus richness and diversity among the plots; however, plot size and the ability of blue vane traps to draw bees from a long distance may have influenced my results. In 2008, 15 genera and 95 individual bees were collected using an aerial net and in 2009, 32 genera and 6,103 individual bees were collected using blue vane traps. I also studied the beneficial insects associated with native Nebraska flora. Seventeen species of native, perennial flora were established in 3 separate plots located in eastern Nebraska. I transplanted four plants of each species in randomized 0.61 m x 0.61 m squares of a 3.05 m x 9.14 m plot. Arthropods were sampled using a modified leaf blower/vacuum. Insects and other arthropods were identified to family and organized into groups of predators, parasites, pollinators, herbivores, and miscellaneous. Associations between plant species and families of beneficial arthropods (predators, parasites, and pollinators) were made. Pycnanthemum flexuosum Walter attracted significantly more beneficial arthropod families than 7 other species of plants tested. Dalea purpurea Vent and Liatris punctata Hook also attracted significantly fewer beneficial arthropod families than 4 other species of plants tested. In total, 31 predator, 11 parasitic, 4 pollinator, 31 herbivore, and 10 miscellaneous families of arthropods were recorded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using inert gas condensation techniques the properties of sputtered neodymium-iron-born clusters were investigated. A D.C. magnetron sputtering source created vaporous Nd-Fe-B which was then condensed into clusters and deposited onto silicon substrates. A composite target of Nd-Fe-B discs on an iron plate and a composite target of Nd-(Fe-Co)-B were utilized to create clusters. The clusters were coated with a carbon layer through R.F. sputtering to prevent oxidation. Samples were investigated in the TEM and showed a size distribution with an average particle diameter of 8.11 nm. The clusters, upon deposition, were amorphous as indicated by diffuse diffraction patterns obtained through SAD. The EDS showed compositionally a direct correlation in the ratio of rare-earth to transition metals between the target and deposited samples. The magnetic properties of the as-deposited clusters showed superparamagnetic properties at high temperatures and ferromagnetic properties at low temperatures; these properties are indicative of rare-earth transition metal amorphous clusters. Annealing of samples showed an initial increase in the coercivity. Samples were annealed in an inert gas atmosphere at 600o C for increasing amounts of time. The samples showed an initial increase in coercivity, but showed no additional increases with additional annealing time. SAD of annealed cluster samples showed the presence of Nd2Fe17 and a bcc-Nd phase. The bcc-Nd is the result of oxidation at high temperatures created during annealing and surface interface energy. The magnetic properties of the annealed samples showed weak coercivity and a saturation magnetization equivalent to that of Nd2Fe17. The annealed clusters showed a slight increase in coercivity at low temperatures. These results indicate a loss of boron during the sputtering process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of rats in our Hawaiian sugar cane fields has been with us for a long time. Early records tell of heavy damage at various times on all the islands where sugar cane is grown. Many methods were tried to control these rats. Trapping was once used as a control measure, a bounty was used for a time, gangs of dogs were trained to catch the rats as the cane was harvested. Many kinds of baits and poisons were used. All of these methods were of some value as long as labor was cheap. Our present day problem started when the labor costs started up and the sugar industry shifted to long cropping. Until World War II cane was an annual crop. After the war it was shifted to a two year crop, three years in some places. Depending on variety, location, and soil we raise 90 to 130 tons of sugar cane per acre, which produces 7 to 15 tons of sugar per acre for a two year crop. This sugar brings about $135 dollars per ton. This tonnage of cane is a thick tangle of vegetation. The cane grows erect for almost a year, as it continues to grow it bends over at the base. This allows the stalk to rest on the ground or on other stalks of cane as it continues to grow. These stalks form a tangled mat of stalks and dead leaves that may be two feet thick at the time of harvest. At the same time the leafy growing portion of the stalk will be sticking up out of the mat of cane ten feet in the air. Some of these individual stalks may be 30 feet long and still growing at the time of harvest. All this makes it very hard to get through a cane field as it is one long, prolonged stumble over and through the cane. It is in this mat of cane that our three species of rats live. Two species are familiar to most people in the pest control field. Rattus norvegicus and Rattus rattus. In the latter species we include both the black rat and the alexandrine rats, their habits seem to be the same in Hawaii. Our third rat is the Polynesian rat, Rattus exlans, locally called the Hawaiian rat. This is a small rat, the average length head to tip of tail is nine inches and the average body weight is 65 grams. It has dark brownish fur like the alexandrine rats, and a grey belly. It is found in Indonesia, on most of the islands of Oceania and in New Zealand. All three rats live in our cane fields and the brushy and forested portions of our islands. The norway and alexandrine rats are found in and around the villages and farms, the Polynesian rat is only found in the fields and waste areas. The actual amount of damage done by rats is small, but destruction they cause is large. The rats gnaw through the rind of the cane stalk and eat the soft juicy and sweet tissues inside. They will hollow out one to several nodes per stalk attacked. The effect to the cane stalk is like ringing a tree. After this attack the stalk above the chewed portion usually dies, and sometimes the lower portion too. If the rat does not eat through the stalk the cane stalk could go on living and producing sugar at a reduced rate. Generally an injured stalk does not last long. Disease and souring organisms get in the injury and kill the stalk. And if this isn't enough, some insects are attracted to the injured stalk and will sometimes bore in and kill it. An injured stalk of cane doesn't have much of a chance. A rat may only gnaw out six inches of a 30 foot stalk and the whole stalk will die. If the rat only destroyed what he ate we could ignore them but they cause the death of too much cane. This dead, dying, and souring cane cause several direct and indirect tosses. First we lose the sugar that the cane would have produced. We harvest all of our cane mechanically so we haul the dead and souring cane to the mill where we have to grind it with our good cane and the bad cane reduces the purity of the sugar juices we squeeze from the cane. Rats reduce our income and run up our overhead.