3 resultados para OCLC Resource Sharing

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a resource-sharing scheme that supports three kinds of sharing scenarios in a WDM mesh network with path-based protection and sparse OEO regeneration. Several approaches are used to maximize the sharing of wavelength-links and OEO regenerators.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the problem of survivable lightpath provisioning in wavelength-division-multiplexing (WDM) mesh networks, taking into consideration optical-layer protection and some realistic optical signal quality constraints. The investigated networks use sparsely placed optical–electrical–optical (O/E/O) modules for regeneration and wavelength conversion. Given a fixed network topology with a number of sparsely placed O/E/O modules and a set of connection requests, a pair of link-disjoint lightpaths is established for each connection. Due to physical impairments and wavelength continuity, both the working and protection lightpaths need to be regenerated at some intermediate nodes to overcome signal quality degradation and wavelength contention. In the present paper, resource-efficient provisioning solutions are achieved with the objective of maximizing resource sharing. The authors propose a resource-sharing scheme that supports three kinds of resource-sharing scenarios, including a conventional wavelength-link sharing scenario, which shares wavelength links between protection lightpaths, and two new scenarios, which share O/E/O modules between protection lightpaths and between working and protection lightpaths. An integer linear programming (ILP)-based solution approach is used to find optimal solutions. The authors also propose a local optimization heuristic approach and a tabu search heuristic approach to solve this problem for real-world, large mesh networks. Numerical results show that our solution approaches work well under a variety of network settings and achieves a high level of resource-sharing rates (over 60% for O/E/O modules and over 30% for wavelength links), which translate into great savings in network costs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the important issues in establishing a fault tolerant connection in a wavelength division multiplexing optical network is computing a pair of disjoint working and protection paths and a free wavelength along the paths. While most of the earlier research focused only on computing disjoint paths, in this work we consider computing both disjoint paths and a free wavelength along the paths. The concept of dependent cost structure (DCS) of protection paths to enhance their resource sharing ability was proposed in our earlier work. In this work we extend the concept of DCS of protection paths to wavelength continuous networks. We formalize the problem of computing disjoint paths with DCS in wavelength continuous networks and prove that it is NP-complete. We present an iterative heuristic that uses a layered graph model to compute disjoint paths with DCS and identify a free wavelength.