2 resultados para Numerical power performance

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate the problem of routing connections in all-optical networks while allowing for degradation of routed signals by different optical components. To overcome the complexity of the problem, we divide it into two parts. First, we solve the pure RWA problem using fixed routes for every connection. Second, power assignment is accomplished by either using the smallest-gain first (SGF) heuristic or using a genetic algorithm. Numerical examples on a wide variety of networks show that (a) the number of connections established without considering the signal attenuation was most of the time greater than that achievable considering attenuation and (b) the genetic solution quality was much better than that of SGF, especially when the conflict graph of the connections generated by the linear solver is denser.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sparse traffic grooming is a practical problem to be addressed in heterogeneous multi-vendor optical WDM networks where only some of the optical cross-connects (OXCs) have grooming capabilities. Such a network is called as a sparse grooming network. The sparse grooming problem under dynamic traffic in optical WDM mesh networks is a relatively unexplored problem. In this work, we propose the maximize-lightpath-sharing multi-hop (MLS-MH) grooming algorithm to support dynamic traffic grooming in sparse grooming networks. We also present an analytical model to evaluate the blocking performance of the MLS-MH algorithm. Simulation results show that MLSMH outperforms an existing grooming algorithm, the shortest path single-hop (SPSH) algorithm. The numerical results from analysis show that it matches closely with the simulation. The effect of the number of grooming nodes in the network on the blocking performance is also analyzed.