10 resultados para Not conventional text
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
The recent likely extinction of the baiji (Chinese river dolphin [Lipotes vexillifer]) (Turvey et al. 2007) makes the vaquita (Gulf of California porpoise [Phocoena sinus]) the most endangered cetacean. The vaquita has the smallest range of any porpoise, dolphin, or whale and, like the baiji, has long been threatened primarily by accidental deaths in fishing gear (bycatch) (Rojas-Bracho et al. 2006). Despite repeated recommendations from scientific bodies and conservation organizations, no effective actions have been taken to remove nets from the vaquita’s environment. Here, we address three questions that are important to vaquita conservation: (1) How many vaquitas remain? (2) How much time is left to find a solution to the bycatch problem? and (3) Are further abundance surveys or bycatch estimates needed to justify the immediate removal of all entangling nets from the range of the vaquita? Our answers are, in short: (1) there are about 150 vaquitas left, (2) there are at most 2 years within which to find a solution, and (3) further abundance surveys or bycatch estimates are not needed. The answers to the first two questions make clear that action is needed now, whereas the answer to the last question removes the excuse of uncertainty as a delay tactic. Herein we explain our reasoning.
Resumo:
Interferon-γ (IFN-γ) contributes to host resistance during acute infection with Trypanosoma cruzi, the causative agent of Chagas’ disease. Inducibly expressed guanosine triphosphatase (IGTP), a 48-kDa guanosine triphosphatase (GTPase), is a member of a family of GTPase proteins inducibly expressed by IFN-γ. The expression pattern of IGTP suggests that it may mediate IFN-γ–induced responses in a variety of cell types. IGTP has been demonstrated to be important for control of Toxoplasma gondii infection but not for resistance against Listeria monocytogenes. We evaluated the role of IGTP in development of chronic chagasic cardiomyopathy in IGTP null mice and C57X129sv (wild type [WT]) mice infected with the Brazil strain for 6 mo. There was no significant difference in parasitemia or cardiac histopathology between null and WT mice. Right ventricular remodeling was observed in infected IGTP null mice, suggesting that IGTP does not significantly alter the course of T. cruzi infection.
Resumo:
In this action research study of my sixth grade mathematics class, I investigated the influence a change in my questioning tactics would have on students’ ability to determine answer reasonability to mathematics problems. During the course of my research, students were asked to explain their problem solving and solutions. Students, amongst themselves, discussed solutions given by their peers and the reasonability of those solutions. They also completed daily questionnaires that inquired about my questioning practices, and 10 students were randomly chosen to be interviewed regarding their problem solving strategies. I discovered that by placing more emphasis on the process rather than the product, students became used to questioning problem solving strategies and explaining their reasoning. I plan to maintain this practice in the future while incorporating more visual and textual explanations to support verbal explanations.
Resumo:
Double-observer line transect methods are becoming increasingly widespread, especially for the estimation of marine mammal abundance from aerial and shipboard surveys when detection of animals on the line is uncertain. The resulting data supplement conventional distance sampling data with two-sample mark–recapture data. Like conventional mark–recapture data, these have inherent problems for estimating abundance in the presence of heterogeneity. Unlike conventional mark–recapture methods, line transect methods use knowledge of the distribution of a covariate, which affects detection probability (namely, distance from the transect line) in inference. This knowledge can be used to diagnose unmodeled heterogeneity in the mark–recapture component of the data. By modeling the covariance in detection probabilities with distance, we show how the estimation problem can be formulated in terms of different levels of independence. At one extreme, full independence is assumed, as in the Petersen estimator (which does not use distance data); at the other extreme, independence only occurs in the limit as detection probability tends to one. Between the two extremes, there is a range of models, including those currently in common use, which have intermediate levels of independence. We show how this framework can be used to provide more reliable analysis of double-observer line transect data. We test the methods by simulation, and by analysis of a dataset for which true abundance is known. We illustrate the approach through analysis of minke whale sightings data from the North Sea and adjacent waters.
Resumo:
Polymerase chain reaction techniques were developed and applied to identify DNA from .40 species of prey contained in fecal (scat) soft-part matrix collected at terrestrial sites used by Steller sea lions (Eumetopias jubatus) in British Columbia and the eastern Aleutian Islands, Alaska. Sixty percent more fish and cephalopod prey were identified by morphological analyses of hard parts compared with DNA analysis of soft parts (hard parts identified higher relative proportions of Ammodytes sp., Cottidae, and certain Gadidae). DNA identified 213 prey occurrences, of which 75 (35%) were undetected by hard parts (mainly Salmonidae, Pleuronectidae, Elasmobranchii, and Cephalopoda), and thereby increased species occurrences by 22% overall and species richness in 44% of cases (when comparing 110 scats that amplified prey DNA). Prey composition was identical within only 20% of scats. Overall, diet composition derived from both identification techniques combined did not differ significantly from hard-part identification alone, suggesting that past scat-based diet studies have not missed major dietary components. However, significant differences in relative diet contributions across scats (as identified using the two techniques separately) reflect passage rate differences between hard and soft digesta material and highlight certain hypothesized limitations in conventional morphological-based methods (e.g., differences in resistance to digestion, hard part regurgitation, partial and secondary prey consumption), as well as potential technical issues (e.g., resolution of primer efficiency and sensitivity and scat subsampling protocols). DNA analysis of salmon occurrence (from scat soft-part matrix and 238 archived salmon hard parts) provided species-level taxonomic resolution that could not be obtained by morphological identification and showed that Steller sea lions were primarily consuming pink (Oncorhynchus gorbuscha) and chum (Oncorhynchus keta) salmon. Notably, DNA from Atlantic salmon (Salmo salar) that likely originated from a distant fish farm was also detected in two scats from one site in the eastern Aleutian Islands. Overall, molecular techniques are valuable for identifying prey in the fecal remains of marine predators. Combining DNA and hard-part identification will effectively alleviate certain predicted biases and will ultimately enhance measures of diet richness, fisheries interactions (especially salmon-related ones), and the ecological role of pinnipeds and other marine predators, to the benefit of marine wildlife conservationists and fisheries managers.
Resumo:
Active machine learning algorithms are used when large numbers of unlabeled examples are available and getting labels for them is costly (e.g. requiring consulting a human expert). Many conventional active learning algorithms focus on refining the decision boundary, at the expense of exploring new regions that the current hypothesis misclassifies. We propose a new active learning algorithm that balances such exploration with refining of the decision boundary by dynamically adjusting the probability to explore at each step. Our experimental results demonstrate improved performance on data sets that require extensive exploration while remaining competitive on data sets that do not. Our algorithm also shows significant tolerance of noise.
Resumo:
Background: The negative sensory properties of casein hydrolysates (HC) often limit their usage in products intended for human consumption, despite HC being nutritious and having many functional benefits. Recent, but taxonomically limited, evidence suggests that other animals also avoid consuming HC when alternatives exist. Methodology/Principal Findings: We evaluated ingestive responses of five herbivorous species (guinea pig, mountain beaver, gopher, vole, and rabbit) and five omnivorous species (rat, coyote, house mouse, white-footed mouse, and deer mouse; N = 16–18/species) using solid foods containing 20% HC in a series of two-choice preference tests that used a nonprotein, cellulose-based alternative. Individuals were also tested with collagen hydrolysate (gelatin; GE) to determine whether it would induce similar ingestive responses to those induced by HC. Despite HC and GE having very different nutritional and sensory qualities, both hydrolysates produced similar preference score patterns. We found that the herbivores generally avoided the hydrolysates while the omnivores consumed them at similar levels to the cellulose diet or, more rarely, preferred them (HC by the white-footed mouse; GE by the rat). Follow-up preference tests pairing HC and the nutritionally equivalent intact casein (C) were performed on the three mouse species and the guinea pigs. For the mice, mean HC preference scores were lower in the HC v C compared to the HC v Cel tests, indicating that HC’s sensory qualities negatively affected its consumption. However, responses were species-specific. For the guinea pigs, repeated exposure to HC or C (4.7-h sessions; N = 10) were found to increase subsequent HC preference scores in an HC v C preference test, which was interpreted in the light of conservative foraging strategies thought to typify herbivores. Conclusions/Significance: This is the first empirical study of dietary niche-related taxonomic differences in ingestive responses to protein hydrolysates using multiple species under comparable conditions. Our results provide a basis for future work in sensory, physiological, and behavioral mechanisms of hydrolysate avoidance and on the potential use of hydrolysates for pest management.
Resumo:
In Hawaii, invasive plants have the ability to alter litter-based food chains because they often have litter traits that differ from native species. Additionally, abundant invasive predators, especially those representing new trophic levels, can reduce prey. The relative importance of these two processes on the litter invertebrate community in Hawaii is important, because they could affect the large number of endemic and endangered invertebrates. We determined the relative importance of litter resources, represented by leaf litter of two trees, an invasive nitrogen-fixer, Falcataria moluccana, and a native tree, Metrosideros polymorpha, and predation of an invasive terrestrial frog, Eleutherodactylus coqui, on leaf litter invertebrate abundance and composition. Principle component analysis revealed that F. moluccana litter creates an invertebrate community that greatly differs from that found in M. polymorpha litter. We found that F. moluccana increased the abundance of non-native fragmenters (Amphipoda and Isopoda) by 400% and non-native predaceous ants (Hymenoptera: Formicidae) by 200%. E. coqui had less effect on the litter invertebrate community; it reduced microbivores by 40% in F. moluccana and non-native ants by 30% across litter types. E. coqui stomach contents were similar in abundance and composition in both litter treatments, despite dramatic differences in the invertebrate community. Additionally, our results suggest that invertebrate community differences between litter types did not cascade to influence E. coqui growth or survivorship. In conclusion, it appears that an invasive nitrogen-fixing tree species has a greater influence on litter invertebrate community abundance and composition than the invasive predator, E. coqui.
Resumo:
During autumn 2003, several thousand European starlings (Sturnus vulgaris) began roosting on exposed I-beams in a newly constructed, decorative glass canopy that covered the passenger pick-up area at the terminal building for Cleveland Hopkins International Airport, Ohio. The use of lethal control or conventional dispersal techniques, such as pyrotechnics and fire hoses, were not feasible in the airport terminal area. The design and aesthetics of the structure precluded the use of netting and other exclusion materials. In January 2004, an attempt was made to disperse the birds using recorded predator and distress calls broadcast from speakers installed in the structure. This technique failed to disperse the birds. In February 2004, we developed a technique using compressed air to physically and audibly harass the birds. We used a trailer-mounted commercial air compressor producing 185 cubic feet per minute of air at 100 pounds per square inch pressure and a 20-foot long, 1-inch diameter PVC pipe attached to the outlet hose. One person slowly (< 5 mph) drove a pick-up truck through the airport terminal at dusk while the second person sat on a bench in the truck bed and directed the compressed air from the pipe into the canopy to harass starlings attempting to enter the roost site. After 5 consecutive nights of compressed-air harassment, virtually no starlings attempted to roost in the canopy. Once familiar with the physical effects of the compressed air, the birds dispersed at the sound of the air. Only occasional harassment at dusk was needed through the remainder of the winter to keep the canopy free of starlings. Similar harassment with the compressor was conducted successfully in autumn 2004 with the addition of a modified leaf blower, wooden clappers, and laser. In conclusion, we found compressed air to be a safe, unobtrusive, and effective method for dispersing starlings from an urban roost site. This technique would likely be applicable for other urban-roosting species such as crows, house sparrows, and blackbirds.