6 resultados para Noailles, Antoinette-Charl.-Rosalie-Léont. de

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raccoons are the reservoir for the raccoon rabies virus variant in the United States. To combat this threat, oral rabies vaccination (ORV) programs are conducted in many eastern states. To aid in these efforts, the genetic structure of raccoons (Procyon lotor) was assessed in southwestern Pennsylvania to determine if select geographic features (i.e., ridges and valleys) serve as corridors or hindrances to raccoon gene flow (e.g., movement) and, therefore, rabies virus trafficking in this physiographic region. Raccoon DNA samples (n = 185) were collected from one ridge site and two adjacent valleys in southwestern Pennsylvania (Westmoreland, Cambria, Fayette, and Somerset counties). Raccoon genetic structure within and among these study sites was characterized at nine microsatellite loci. Results indicated that there was little population subdivision among any sites sampled. Furthermore, analyses using a model-based clustering approach indicated one essentially panmictic population was present among all the raccoons sampled over a reasonably broad geographic area (e.g., sites up to 36 km apart). However, a signature of isolation by distance was detected, suggesting that widths of ORV zones are critical for success. Combined, these data indicate that geographic features within this landscape influence raccoon gene flow only to a limited extent, suggesting that ridges of this physiographic system will not provide substantial long-term natural barriers to rabies virus trafficking. These results may be of value for future ORV efforts in Pennsylvania and other eastern states with similar landscapes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two of the five subspecies of the western big-eared bat, Corynorhinus townsendii, are listed as federally endangered with the remaining three being of conservation concern. Knowing the degree of connectivity among populations would aid in the establishment of sound conservation and management plans for this taxon. For this purpose, we have developed and characterized eight polymorphic microsatellite markers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We developed 10 microsatellite markers for the mountain beaver, Aplodontia rufa rufa. In three populations of A. r. rufa, the number of alleles for these loci ranged from monomorphic to nine. Average observed heterozygosities in these populations ranged from 0.29 to 0.60. We also tested previously published markers from the endangered subspecies A. r. nigra in A. r. rufa populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We developed and characterized 15 microsatellite markers for Rafinesque’s big-eared bat, Corynorhinus rafinesquii. In a population from Tennessee, the number of alleles per locus ranged from three to 13 and observed heterozygosities were 0.35 to 0.97 per locus. These loci will provide appropriate variability for estimation of population connectivity, demographic parameters, and genetic diversity for this species of concern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Townsend’s big-eared bat, Corynorhinus townsendii, is distributed broadly across western North America and in two isolated, endangered populations in central and eastern United States. There are five subspecies of C. townsendii; C. t. pallescens, C. t. australis, C. t. townsendii, C. t. ingens, and C. t. virginianus with varying degrees of concern over the conservation status of each. The aim of this study was to use mitochondrial and microsatellite DNA data to examine genetic diversity, population differentiation, and dispersal of three C. townsendii subspecies. C. t. virginianus is found in isolated populations in the eastern United States and was listed as endangered under the Endangered Species Act in 1979. Concern also exists about declining populations of two western subspecies, C. t. pallescens and C. t. townsendii. Using a comparative approach, estimates of the genetic diversity within populations of the endangered subspecies, C. t. virginianus, were found to be significantly lower than within populations of the two western subspecies. Further, both classes of molecular markers revealed significant differentiation among regional populations of C. t. virginianus with most genetic diversity distributed among populations. Genetic diversity was not significantly different between C. t. townsendii and C. t. pallescens. Some populations of C. t. townsendii are not genetically differentiated from populations of C. t. pallescens in areas of sympatry. For the western subspecies gene flow appears to occur primarily through male dispersal. Finally, geographic regions representing significantly differentiated and genetically unique populations of C. townsendii virginianus are recognized as distinct evolutionary significant units.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The western spread of raccoon rabies in Alabama has been slow and even appears to regress eastward periodically. While the disease has been present in the state for over 30 years, areas in northwest Alabama are devoid of raccoon rabies. This variation resulting in an enzootic area of raccoon rabies primarily in southeastern Alabama may be due to landscape features that hinder the movement of raccoons (i.e., gene flow) among different locations. We used 11 raccoon-specific microsatellite markers to obtain individual genotypes to examine gene flow among areas that were rabies free, enzootic with rabies, or had only sporadic reports of the disease. Samples from 70 individuals were collected from 5 sampling localities in 3 counties. The landscape feature data were collected from geographic information system (GIS) data. We inferred gene flow by estimating FST and by using Bayesian tests to identify genetic clusters. Estimates of pairwise FST indicated genetic differentiation and restricted gene flow between some sites, and an uneven distribution of genetic clusters was observed. Of the landscape features examined (i.e., land cover, elevation, slope, roads, and hydrology), only land cover had an association with genetic differentiation, suggesting this landscape variable may affect gene flow among raccoon populations and thus the spread of raccoon variant of rabies in Alabama.