3 resultados para Native plants for cultivation -- Nutrition

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

For hundreds of years black-tailed prairie dogs inhabited the Great Plains by the millions, improving the grazing for bison and pronghorn antelope, digging escape holes and homes for burrowing owls and rodents, and serving as prey for badgers, coyotes, hawks, and bobcats. This book by the renowned naturalist and writer Paul A. Johnsgard tells the complex biological and environmental story of the western Great Plains under the prairie dog’s reign—and then under a brief but devastating century of human dominion. An indispensable and highly readable introduction to the ecosystem of the shortgrass prairie, Prairie Dog Empire describes in clear and detailed terms the habitat and habits of black-tailed prairie dogs; their subsistence, seasonal behavior, and the makeup of their vast colonies; and the ways in which their “towns” transform the surrounding terrain—for better or worse. Johnsgard recounts how this terrain was in turn transformed over the past century by the destruction of prairie dogs and their grassland habitats, together with the removal of the bison and their replacement with domestic livestock. A disturbing look at profound ecological alterations in the environment, this book also offers a rare and invaluable close-up view of the rich history and threatened future of the creature once considered the “keystone” species of the western plains. Included are maps, drawings, and listings of more than two hundred natural grassland preserves where many of the region’s native plants and animals may still be seen and studied. This excerpt includes the Preface and Chapter 1, "The Western Shortgrass Prairie: A Brief History."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insect pollination is an essential ecosystem service, and bees are the principal pollinators of wild and cultivated plants. Habitat management and enhancement are a proven way to encourage wild bee populations, providing them with food and nesting resources. I examined bee diversity and abundance in plots managed by The Nature Conservancy near Wood River, NE. The plots were seeded with 2 seed mixes at 2 seeding rates: high diversity mix at the recommended rate, high diversity mix double the recommended rate, Natural Resources Conservation Service (NRCS) conservation planting (CP) 25 mix at one-half the recommended rate, and NRCS CP25 mix at the recommended rate. I measured wild bee abundance and diversity, and established a database of wild bees associated with the plots. I also compared genus richness and abundance among the plots using and aerial net and blue vane traps to collect bees. Significant differences were not observed in genus richness and diversity among the plots; however, plot size and the ability of blue vane traps to draw bees from a long distance may have influenced my results. In 2008, 15 genera and 95 individual bees were collected using an aerial net and in 2009, 32 genera and 6,103 individual bees were collected using blue vane traps. I also studied the beneficial insects associated with native Nebraska flora. Seventeen species of native, perennial flora were established in 3 separate plots located in eastern Nebraska. I transplanted four plants of each species in randomized 0.61 m x 0.61 m squares of a 3.05 m x 9.14 m plot. Arthropods were sampled using a modified leaf blower/vacuum. Insects and other arthropods were identified to family and organized into groups of predators, parasites, pollinators, herbivores, and miscellaneous. Associations between plant species and families of beneficial arthropods (predators, parasites, and pollinators) were made. Pycnanthemum flexuosum Walter attracted significantly more beneficial arthropod families than 7 other species of plants tested. Dalea purpurea Vent and Liatris punctata Hook also attracted significantly fewer beneficial arthropod families than 4 other species of plants tested. In total, 31 predator, 11 parasitic, 4 pollinator, 31 herbivore, and 10 miscellaneous families of arthropods were recorded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. Based on prior field observations, we hypothesized that individual and interacting effects of plant size, density, insect herbivory, and especially fungal disease, influenced seedling and juvenile plant growth in native Platte thistle populations (Cirsium canescens Nutt.). We worked at Arapaho Prairie in the Nebraska Sandhills (May - August 2007), monitoring plant growth, insect damage, and fungal infection within different density thistle patches. In the main experiment, we sprayed half of test plants in different density patches with fungicide (Fungonil© Bonide, containing chlorothalonil) and half with a water control. Fungal infection rates were very low, so we found no difference in fungal attack between these treatments. However, plants that received the fungicide treatment had significantly faster growth over the season than did the control plants. At the same time, plants in the fungicide treatment had significantly reduced insect herbivory. These results strongly suggest that the fungicide had insecticidal effects and that insect herbivory significantly decreases juvenile Platte thistle growth. Further, damage by insect herbivores tended to be higher for larger plants, and herbivory was variable among different patches. However, plant density did not appear to have a large effect on the amount of insect herbivory that individual juvenile Platte thistle plants received. In the second experiment, we examined germination and survival success in relationship to seed density, and found that germination success was higher in areas of lower seed density. In the third experiment, we tested germination for filled seeds categorized primarily by color variation and size, and found no difference in germination related to either color or seed weight. We conclude that seed density, but not seed quality as estimated by color or size, affects germination success. Further, although herbivory was not significantly affected by plant density at any of the scales examined, insect herbivory significantly reduces the growth and success of juveniles of this characteristic native sand prairie plant.