2 resultados para NANOTUBE PASTE ELECTRODES

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular Dynamics (MD) simulation is one of the most important computational techniques with broad applications in physics, chemistry, chemical engineering, materials design and biological science. Traditional computational chemistry refers to quantum calculations based on solving Schrodinger equations. Later developed Density Functional Theory (DFT) based on solving Kohn-Sham equations became the more popular ab initio calculation technique which could deal with ~1000 atoms by explicitly considering electron interactions. In contrast, MD simulation based on solving classical mechanics equations of motion is a totally different technique in the field of computational chemistry. Electron interactions were implicitly included in the empirical atom-based potential functions and the system size to be investigated can be extended to ~106 atoms. The thermodynamic properties of model fluids are mainly determined by macroscopic quantities, like temperature, pressure, density. The quantum effects on thermodynamic properties like melting point, surface tension are not dominant. In this work, we mainly investigated the melting point, surface tension (liquid-vapor and liquid-solid) of model fluids including Lennard-Jones model, Stockmayer model and a couple of water models (TIP4P/Ew, TIP5P/Ew) by means of MD simulation. In addition, some new structures of water confined in carbon nanotube were discovered and transport behaviors of water and ions through nano-channels were also revealed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transferring data across applications is a common end user task, and copying and pasting via the clipboard lets users do so relatively easily. Using the clipboard, however, can also introduce inefficiencies and errors in user tasks. To help researchers and tool developers understand and address these problems, we studied how end users interact with the clipboard through cut, copy, and paste actions. This study was performed by logging clipboard interactions while end users performed everyday tasks. From the clipboard usage data, we have identified several usage patterns that describe how data is transferred within the desktop environment. Such patterns help us understand end user behavior and indicate areas in which clipboard support tools can be improved.