2 resultados para Mount-isa

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blast traumatic brain injury (BTBI) has become an important topic of study because of the increase of such incidents, especially due to the recent growth of improvised explosive devices (IEDs). This thesis discusses a project in which laboratory testing of BTBI was made possible by performing blast loading on experimental models simulating the human head. Three versions of experimental models were prepared – one having a simple geometry and the other two having geometry similar to a human head. For developing the head models, three important parts of the head were considered for material modeling and analysis – the skin, skull and brain. The materials simulating skin, skull and brain went through many testing procedures including dynamic mechanical analysis (DMA). For finding a suitable brain simulant, several materials were tested under low and high frequencies. Step response analysis, rheometry and DMA tests were performed on materials such as water based gels, oil based mixtures and silicone gels cured at different temperatures. The gelatins and silicone gels showed promising results toward their use as brain surrogate materials. Temperature degradation tests were performed on gelatins, indicating the fast degradation of gelatins at room temperature. Silicone gels were much more stable compared to the water based gels. Silicone gels were further processed using a thinner-type additive gel to bring the dynamic modulus values closer to those of human brain matter. The obtained values from DMA were compared to the values for human brain as found in literature. Then a silicone rubber brain mold was prepared to give the brain model accurate geometry. All the components were put together to make the entire head model. A steel mount was prepared to attach the head for testing at the end of the shock tube. Instrumentation was implemented in the head model to obtain effective results for understanding more about the possible mechanisms of BTBI. The final head model was named the Realistic Explosive Dummy Head or the “RED Head.” The RED Head offered potential for realistic experimental testing in blast loading conditions by virtue of its material properties and geometrical accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The opening sonnets of Jean de La Ceppède’s Théorèmes (1613, 1622) present an urban vs. rural conflict that mirrors the dialectic between sin and salvation running throughout the work. La Ceppède’s focus for this struggle becomes the stark contrast between Jerusalem and the garden at the Mount of Olives. Jerusalem, as the place where Christ is persecuted and eventually tried, represents a Babylon-like enclave of transgression, while the garden is portrayed as a site of purity and tranquil reflection. From a literary standpoint, La Ceppède’s emphasis on the clash between dystopian and utopian settings comprises part of his adaptation of the pastoral, where this particular struggle becomes one of the genre’s principal motifs. In general, the contrast between Jerusalem and the Mount of Olives emerges as the point of departure for the poet’s figuration of nature, both human and physical. A human construct, the city of Jerusalem becomes a metaphor for human corruption. In view of humanity’s fall in paradise and the denaturation it symbolizes, the poet’s goal, on both intellectual and affective levels, is to place the reader/dévot in a position to lift her/himself from the depravity of human nature to the grace of divine nature.