4 resultados para Mosaic Viruses.

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several large dsDNA-containing viruses such as poxviruses (smallpox) and herpes viruses are well known among the scientific community, as well as the general populace, because they cause human diseases. The large dsDNA insect-infecting baculoviruses are also well known in the scientific community because they are used both as biological control agents and as protein expression systems. However, there are other large dsDNA-containing viruses, including the giant 1.2-Mb mimivirus, which are less well known even though all of them play important roles in everyday life. Seven of these virus families are reviewed in this book.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire scar and vegetative analysis were used to construct a fire history for the Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa) vegetation type of the Utah State University (USU) T. W Daniel Experimental Forest. Three distinct periods of fire frequency were established-presettlement (1700-1855), settlement (1856-1909), and suppression (1910-1990). Mean fire interval (MFI) decreased during the settlement period and greatly increased during the suppression era. The difference was attributed to the influx of ignition sources during the settlement of nearby Cache Valley, located 40 km to the west. Logging and livestock grazing appear to have led to the reduced MFI, which in turn worked as a factor to create the vegetative mosaic now observed on the study area. The increase in MFI during the suppression era permitted the advancement of shade-tolerant species in the understory of the shade-intolerant lodgepole pine (Pinus contorta var. latifolia) and quaking aspen (Populus tremuloides). Continued suppression of disturbance from wildfire will allow the lodgepole pine cover type, which experienced the lowest MFI during the settlement period, to be further invaded by shade-tolerant species, decreasing spatial stand diversity and increasing the risk of more intense fires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INFLUENZA A virus (IAV) (family Orthomyxoviridae) is a highly infectious respiratory pathogen of birds and mammals, including human beings and horses (Palese and Shaw 2007). The virus is classified into different subtypes based on the antigenic properties of the haemagglutinin (HA) and neuraminidase (NA) proteins. Sixteen HA subtypes (H1 to H16) and nine NA subtypes (N1 to N9) have been identified (Fouchier and others 2005). Two subtypes, H3N8 and H7N7, have been isolated from horses. The H7N7 subtype was first isolated from a horse in Czechoslovakia in 1956 (Prague/56) (Sovinova and others 1958), and the H3N8 subtype was first isolated from a horse in Miami, USA, in 1963 (Waddell and others 1963). The H7N7 subtype has not been isolated from horses for three decades and is presumed to be extinct (Webster 1993). The H3N8 subtype is currently a common cause of disease in horses worldwide. In horses, influenza is characterized by an abrupt onset of pyrexia, depression, coughing and nasal discharge, and is often complicated by secondary bacteria infections that can lead to pneumonia and death (Hannant and Mumford 1996). Although H3N8 is a major cause of morbidity in horses throughout the world, information on the seroprevalence of IAV in horses and other domestic animals in Mexico is limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To better understand agronomic and end-use quality in wheat (Triticum aestivum L.) we developed a population containing 154 F6:8 recombinant inbred lines (RILs) from the cross TAM107-R7/Arlin. The parental lines and RILs were phenotyped at six environments in Nebraska and differed for resistance to Wheat soilborne mosaic virus (WSBMV), morphological, agronomic, and end-use quality traits. Additionally, a 2300 cM genome-wide linkage map was created for quantitative trait loci (QTL) analysis. Based on our results across multiple environments, the best RILs could be used for cultivar improvement. The population and marker data are publicly available for interested researchers for future research. The population was used to determine the effect of WSBMV on agronomic and end-use quality and for the mapping of a resistance locus. Results from two infected environments showed that all but two agronomic traits were significantly affected by the disease. Specifically, the disease reduced grain yield by 30% of susceptible RILs and they flowered 5 d later and were 11 cm shorter. End-use quality traits were not negatively affected but flour protein content was increased in susceptible RILs. The resistance locus SbmTmr1 mapped to 27.1 cM near marker wPt-5870 on chromosome 5DL using ELISA data. Finally, we investigated how WSBMV affected QTL detection in the population. QTLs were mapped at two WSBMV infected environments, four uninfected environments, and in the resistant and susceptible RIL subpopulations in the infected environments. Fifty-two significant (LOD≥3) QTLs were mapped in RILs at uninfected environments. Many of the QTLs were pleiotropic or closely linked at 6 chromosomal regions. Forty-seven QTLs were mapped in RILs at WSBMV infected environments. Comparisons between uninfected and infected environments identified 20 common QTLs and 21 environmentally specific QTLs. Finally, 24 QTLs were determined to be affected by WSBMV by comparing the subpopulations in QTL analyses within the same environment. The comparisons were statistically validated using marker by disease interactions. These results showed that QTLs can be affected by WSBMV and careful interpretation of QTL results is needed where biotic stresses are present. Finally, beneficial QTLs not affected by WSBMV or the environment are candidates for marker-assisted selection.