3 resultados para Modular programming.

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robots are needed to perform important field tasks such as hazardous material clean-up, nuclear site inspection, and space exploration. Unfortunately their use is not widespread due to their long development times and high costs. To make them practical, a modular design approach is proposed. Prefabricated modules are rapidly assembled to give a low-cost system for a specific task. This paper described the modular design problem for field robots and the application of a hierarchical selection process to solve this problem. Theoretical analysis and an example case study are presented. The theoretical analysis of the modular design problem revealed the large size of the search space. It showed the advantages of approaching the design on various levels. The hierarchical selection process applies physical rules to reduce the search space to a computationally feasible size and a genetic algorithm performs the final search in a greatly reduced space. This process is based on the observation that simple physically based rules can eliminate large sections of the design space to greatly simplify the search. The design process is applied to a duct inspection task. Five candidate robots were developed. Two of these robots are evaluated using detailed physical simulation. It is shown that the more obvious solution is not able to complete the task, while the non-obvious asymmetric design develop by the process is successful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maximum-likelihood decoding is often the optimal decoding rule one can use, but it is very costly to implement in a general setting. Much effort has therefore been dedicated to find efficient decoding algorithms that either achieve or approximate the error-correcting performance of the maximum-likelihood decoder. This dissertation examines two approaches to this problem. In 2003 Feldman and his collaborators defined the linear programming decoder, which operates by solving a linear programming relaxation of the maximum-likelihood decoding problem. As with many modern decoding algorithms, is possible for the linear programming decoder to output vectors that do not correspond to codewords; such vectors are known as pseudocodewords. In this work, we completely classify the set of linear programming pseudocodewords for the family of cycle codes. For the case of the binary symmetric channel, another approximation of maximum-likelihood decoding was introduced by Omura in 1972. This decoder employs an iterative algorithm whose behavior closely mimics that of the simplex algorithm. We generalize Omura's decoder to operate on any binary-input memoryless channel, thus obtaining a soft-decision decoding algorithm. Further, we prove that the probability of the generalized algorithm returning the maximum-likelihood codeword approaches 1 as the number of iterations goes to infinity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The folded plate girder, a newly proposed bridge girder, is investigated through this thesis. The folded plate girder is cold bent out of a single sheet of steel. The cold bending eliminates the costly and inconsistent shop welds found in traditional girders. The folded plate girder is meant for application in short span bridges. The girder was subjected to an equivalent 75 year lifetime loading to investigate the fatigue performance. The rebar detail used in the closure region between adjacent slabs has been investigated in the past by the NCHRP 12-68 project. This thesis will proposes a hooked rebar detail as a cost effective alternative to the previously recommended headed rebar detail. The proposed hooked rebar detail looks to improve upon the headed bar detail by increasing the clear cover, and reducing the cost of fabrication and shipment of the rebar. Six specimens containing closure regions are subjected to both positive and negative moment loading in order to investigate their behavior and failure modes under ultimate load.