2 resultados para Modeling problems

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this action research study of my sixth grade mathematics class, I investigated how students’ use of think-aloud strategies impacts their success in solving word problems. My research reveals that the use of think-aloud strategies can play an important role in the students’ abilities to understand and solve word problems. Direct instruction and modeling of think-aloud strategies increased my students’ confidence levels and the likelihood that they would use the strategies on their own. Providing students with a template to use as they solve a word problem helps students to better focus in on the think-aloud strategies I had been modeling for them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analyses of ecological data should account for the uncertainty in the process(es) that generated the data. However, accounting for these uncertainties is a difficult task, since ecology is known for its complexity. Measurement and/or process errors are often the only sources of uncertainty modeled when addressing complex ecological problems, yet analyses should also account for uncertainty in sampling design, in model specification, in parameters governing the specified model, and in initial and boundary conditions. Only then can we be confident in the scientific inferences and forecasts made from an analysis. Probability and statistics provide a framework that accounts for multiple sources of uncertainty. Given the complexities of ecological studies, the hierarchical statistical model is an invaluable tool. This approach is not new in ecology, and there are many examples (both Bayesian and non-Bayesian) in the literature illustrating the benefits of this approach. In this article, we provide a baseline for concepts, notation, and methods, from which discussion on hierarchical statistical modeling in ecology can proceed. We have also planted some seeds for discussion and tried to show where the practical difficulties lie. Our thesis is that hierarchical statistical modeling is a powerful way of approaching ecological analysis in the presence of inevitable but quantifiable uncertainties, even if practical issues sometimes require pragmatic compromises.